基于PSO-ANN的月降水模式预测及其应用

Hua-sheng Zhao, Long Jin, Xiaoyan Huang
{"title":"基于PSO-ANN的月降水模式预测及其应用","authors":"Hua-sheng Zhao, Long Jin, Xiaoyan Huang","doi":"10.1109/CSO.2010.20","DOIUrl":null,"url":null,"abstract":"A nonlinear prediction model has been presented of PSO-ANN of monthly precipitation in rain season. It differs from traditional prediction modeling in the following aspects: (1) input factors of the PSO-ANN model of monthly precipitation were selected from a large quantity of preceding period high correlation factors, and they were also highly information-condensed by using the empirical orthogonal function (EOF) method; which effectively condensed the useful information of predictors. (2) Different from the traditional neural network modeling, the PSO-ANN modeling is able to objectively determine the network structure of the PSO-ANN model, and the model constructed has a better generalization capability. The model changes the prediction of climate field to that of the principal component of that field. According to the approximate invariability of eigenvectors of climate field, the prediction of climate field is obtained by return computation, together with the principal component. A test example is predicting the flood period rainfall for the 37 basic stations in Guangxi. The prediction of field for June to September in 2009 is made and comparisons with the field of observations. The results show that the predictive efficacy is remarkable.","PeriodicalId":427481,"journal":{"name":"2010 Third International Joint Conference on Computational Science and Optimization","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Prediction of the Monthly Precipitation Model Based on PSO-ANN and its Applications\",\"authors\":\"Hua-sheng Zhao, Long Jin, Xiaoyan Huang\",\"doi\":\"10.1109/CSO.2010.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonlinear prediction model has been presented of PSO-ANN of monthly precipitation in rain season. It differs from traditional prediction modeling in the following aspects: (1) input factors of the PSO-ANN model of monthly precipitation were selected from a large quantity of preceding period high correlation factors, and they were also highly information-condensed by using the empirical orthogonal function (EOF) method; which effectively condensed the useful information of predictors. (2) Different from the traditional neural network modeling, the PSO-ANN modeling is able to objectively determine the network structure of the PSO-ANN model, and the model constructed has a better generalization capability. The model changes the prediction of climate field to that of the principal component of that field. According to the approximate invariability of eigenvectors of climate field, the prediction of climate field is obtained by return computation, together with the principal component. A test example is predicting the flood period rainfall for the 37 basic stations in Guangxi. The prediction of field for June to September in 2009 is made and comparisons with the field of observations. The results show that the predictive efficacy is remarkable.\",\"PeriodicalId\":427481,\"journal\":{\"name\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2010.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Joint Conference on Computational Science and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2010.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于PSO-ANN的雨季月降水量非线性预测模型。与传统预测模型的不同之处在于:(1)月降水PSO-ANN模型的输入因子是从大量前期高相关因子中选取的,并采用经验正交函数(EOF)方法进行了高度的信息浓缩;有效地浓缩了预测器的有用信息。(2)与传统神经网络建模不同,PSO-ANN建模能够客观地确定PSO-ANN模型的网络结构,构建的模型具有更好的泛化能力。该模式将对气候场的预测转化为对气候场主成分的预测。根据气候场特征向量的近似不变性,结合主成分进行回归计算,得到了气候场的预测结果。以广西37个台站的汛期降水预测为例进行了试验研究。对2009年6 ~ 9月的现场进行了预报,并与现场观测结果进行了比较。结果表明,预测效果显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Prediction of the Monthly Precipitation Model Based on PSO-ANN and its Applications
A nonlinear prediction model has been presented of PSO-ANN of monthly precipitation in rain season. It differs from traditional prediction modeling in the following aspects: (1) input factors of the PSO-ANN model of monthly precipitation were selected from a large quantity of preceding period high correlation factors, and they were also highly information-condensed by using the empirical orthogonal function (EOF) method; which effectively condensed the useful information of predictors. (2) Different from the traditional neural network modeling, the PSO-ANN modeling is able to objectively determine the network structure of the PSO-ANN model, and the model constructed has a better generalization capability. The model changes the prediction of climate field to that of the principal component of that field. According to the approximate invariability of eigenvectors of climate field, the prediction of climate field is obtained by return computation, together with the principal component. A test example is predicting the flood period rainfall for the 37 basic stations in Guangxi. The prediction of field for June to September in 2009 is made and comparisons with the field of observations. The results show that the predictive efficacy is remarkable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信