J. Baxter, Antonio Calà Lesina, J. Guay, L. Ramunno
{"title":"机器学习在等离子体中的应用","authors":"J. Baxter, Antonio Calà Lesina, J. Guay, L. Ramunno","doi":"10.1109/PN.2018.8438845","DOIUrl":null,"url":null,"abstract":"The abundance of acquired data from experiments and simulations makes the field of photonics a perfect environment for machine learning applications. Here we will apply Deep Neural Networks (DNNs) to predict the colour of nano-structured surfaces using either the nanoparticle geometric parameters, or laser parameters used to develop the nano-structured surfaces.","PeriodicalId":423625,"journal":{"name":"2018 Photonics North (PN)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning Applications in Plasmonics\",\"authors\":\"J. Baxter, Antonio Calà Lesina, J. Guay, L. Ramunno\",\"doi\":\"10.1109/PN.2018.8438845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The abundance of acquired data from experiments and simulations makes the field of photonics a perfect environment for machine learning applications. Here we will apply Deep Neural Networks (DNNs) to predict the colour of nano-structured surfaces using either the nanoparticle geometric parameters, or laser parameters used to develop the nano-structured surfaces.\",\"PeriodicalId\":423625,\"journal\":{\"name\":\"2018 Photonics North (PN)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Photonics North (PN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PN.2018.8438845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Photonics North (PN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PN.2018.8438845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The abundance of acquired data from experiments and simulations makes the field of photonics a perfect environment for machine learning applications. Here we will apply Deep Neural Networks (DNNs) to predict the colour of nano-structured surfaces using either the nanoparticle geometric parameters, or laser parameters used to develop the nano-structured surfaces.