机器学习在等离子体中的应用

J. Baxter, Antonio Calà Lesina, J. Guay, L. Ramunno
{"title":"机器学习在等离子体中的应用","authors":"J. Baxter, Antonio Calà Lesina, J. Guay, L. Ramunno","doi":"10.1109/PN.2018.8438845","DOIUrl":null,"url":null,"abstract":"The abundance of acquired data from experiments and simulations makes the field of photonics a perfect environment for machine learning applications. Here we will apply Deep Neural Networks (DNNs) to predict the colour of nano-structured surfaces using either the nanoparticle geometric parameters, or laser parameters used to develop the nano-structured surfaces.","PeriodicalId":423625,"journal":{"name":"2018 Photonics North (PN)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning Applications in Plasmonics\",\"authors\":\"J. Baxter, Antonio Calà Lesina, J. Guay, L. Ramunno\",\"doi\":\"10.1109/PN.2018.8438845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The abundance of acquired data from experiments and simulations makes the field of photonics a perfect environment for machine learning applications. Here we will apply Deep Neural Networks (DNNs) to predict the colour of nano-structured surfaces using either the nanoparticle geometric parameters, or laser parameters used to develop the nano-structured surfaces.\",\"PeriodicalId\":423625,\"journal\":{\"name\":\"2018 Photonics North (PN)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Photonics North (PN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PN.2018.8438845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Photonics North (PN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PN.2018.8438845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从实验和模拟中获得的大量数据使光子学领域成为机器学习应用的完美环境。在这里,我们将应用深度神经网络(dnn)来预测纳米结构表面的颜色,使用纳米粒子几何参数或用于开发纳米结构表面的激光参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Applications in Plasmonics
The abundance of acquired data from experiments and simulations makes the field of photonics a perfect environment for machine learning applications. Here we will apply Deep Neural Networks (DNNs) to predict the colour of nano-structured surfaces using either the nanoparticle geometric parameters, or laser parameters used to develop the nano-structured surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信