手绘草图的多种学习

Zhengyu Huang, Haoran Xie, K. Miyata
{"title":"手绘草图的多种学习","authors":"Zhengyu Huang, Haoran Xie, K. Miyata","doi":"10.1109/NicoInt50878.2020.00032","DOIUrl":null,"url":null,"abstract":"It is a challenge issue to recognize and comprehend hand drawn sketches for various applications such as image retrieval and image-based modeling. In this work, we propose an unsupervised learning framework to obtain the manifold of hand drawn sketches. We use DCT (Discrete Cosine Transform) to exact the feature of preprocessed sketch images from Quick Draw Dataset and adopt LLP (Locality Preserving Projections) to calculate the 2-D manifold of these sketches. Experiment result in flower sketches demonstrates the proposed approach is suitable to represent the manifold of hand drawn sketch.","PeriodicalId":230190,"journal":{"name":"2020 Nicograph International (NicoInt)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifold Learning for Hand Drawn Sketches\",\"authors\":\"Zhengyu Huang, Haoran Xie, K. Miyata\",\"doi\":\"10.1109/NicoInt50878.2020.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a challenge issue to recognize and comprehend hand drawn sketches for various applications such as image retrieval and image-based modeling. In this work, we propose an unsupervised learning framework to obtain the manifold of hand drawn sketches. We use DCT (Discrete Cosine Transform) to exact the feature of preprocessed sketch images from Quick Draw Dataset and adopt LLP (Locality Preserving Projections) to calculate the 2-D manifold of these sketches. Experiment result in flower sketches demonstrates the proposed approach is suitable to represent the manifold of hand drawn sketch.\",\"PeriodicalId\":230190,\"journal\":{\"name\":\"2020 Nicograph International (NicoInt)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Nicograph International (NicoInt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NicoInt50878.2020.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Nicograph International (NicoInt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NicoInt50878.2020.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在图像检索和基于图像的建模等各种应用中,如何识别和理解手绘草图是一个具有挑战性的问题。在这项工作中,我们提出了一个无监督学习框架来获取手绘草图的歧义。我们使用离散余弦变换(DCT)对快速绘制数据集中的预处理草图图像进行特征提取,并采用LLP (Locality Preserving Projections)计算这些草图的二维流形。花卉速写的实验结果表明,该方法可以很好地表示手绘速写的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manifold Learning for Hand Drawn Sketches
It is a challenge issue to recognize and comprehend hand drawn sketches for various applications such as image retrieval and image-based modeling. In this work, we propose an unsupervised learning framework to obtain the manifold of hand drawn sketches. We use DCT (Discrete Cosine Transform) to exact the feature of preprocessed sketch images from Quick Draw Dataset and adopt LLP (Locality Preserving Projections) to calculate the 2-D manifold of these sketches. Experiment result in flower sketches demonstrates the proposed approach is suitable to represent the manifold of hand drawn sketch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信