评估特定于程序的垃圾收集性能的限制

Nicholas Jacek, Meng-Chieh Chiu, Benjamin M Marlin, E. Moss
{"title":"评估特定于程序的垃圾收集性能的限制","authors":"Nicholas Jacek, Meng-Chieh Chiu, Benjamin M Marlin, E. Moss","doi":"10.1145/2908080.2908120","DOIUrl":null,"url":null,"abstract":"We consider the ultimate limits of program-specific garbage collector performance for real programs. We first characterize the GC schedule optimization problem using Markov Decision Processes (MDPs). Based on this characterization, we develop a method of determining, for a given program run and heap size, an optimal schedule of collections for a non-generational collector. We further explore the limits of performance of a generational collector, where it is not feasible to search the space of schedules to prove optimality. Still, we show significant improvements with Least Squares Policy Iteration, a reinforcement learning technique for solving MDPs. We demonstrate that there is considerable promise to reduce garbage collection costs by developing program-specific collection policies.","PeriodicalId":178839,"journal":{"name":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Assessing the limits of program-specific garbage collection performance\",\"authors\":\"Nicholas Jacek, Meng-Chieh Chiu, Benjamin M Marlin, E. Moss\",\"doi\":\"10.1145/2908080.2908120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the ultimate limits of program-specific garbage collector performance for real programs. We first characterize the GC schedule optimization problem using Markov Decision Processes (MDPs). Based on this characterization, we develop a method of determining, for a given program run and heap size, an optimal schedule of collections for a non-generational collector. We further explore the limits of performance of a generational collector, where it is not feasible to search the space of schedules to prove optimality. Still, we show significant improvements with Least Squares Policy Iteration, a reinforcement learning technique for solving MDPs. We demonstrate that there is considerable promise to reduce garbage collection costs by developing program-specific collection policies.\",\"PeriodicalId\":178839,\"journal\":{\"name\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2908080.2908120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2908080.2908120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们考虑了实际程序中特定于程序的垃圾收集器性能的最终限制。我们首先使用马尔可夫决策过程(mdp)描述GC调度优化问题。基于这种特性,我们开发了一种方法,用于确定给定程序运行和堆大小的非分代收集器的最佳收集调度。我们进一步探讨了分代收集器的性能限制,其中搜索调度空间以证明最优性是不可行的。尽管如此,我们展示了最小二乘策略迭代的显著改进,这是一种用于解决mdp的强化学习技术。我们证明,通过开发特定于程序的收集策略,可以大大降低垃圾收集成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the limits of program-specific garbage collection performance
We consider the ultimate limits of program-specific garbage collector performance for real programs. We first characterize the GC schedule optimization problem using Markov Decision Processes (MDPs). Based on this characterization, we develop a method of determining, for a given program run and heap size, an optimal schedule of collections for a non-generational collector. We further explore the limits of performance of a generational collector, where it is not feasible to search the space of schedules to prove optimality. Still, we show significant improvements with Least Squares Policy Iteration, a reinforcement learning technique for solving MDPs. We demonstrate that there is considerable promise to reduce garbage collection costs by developing program-specific collection policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信