加权距离变换的并行算法

A. Fujiwara, M. Inoue, T. Masuzawa, H. Fujiwara
{"title":"加权距离变换的并行算法","authors":"A. Fujiwara, M. Inoue, T. Masuzawa, H. Fujiwara","doi":"10.1109/IPPS.1997.580934","DOIUrl":null,"url":null,"abstract":"This paper presents a parallel algorithm for the weighted distance transform and the nearest feature transform of an n/spl times/n binary image. We show that the algorithm runs in O(log n) time using n/sup 2//log n processors on the EREW PRAM and in O(log log n) time using n/sup 2//log log n processors on the common CRCW PRAM. We also show that the algorithm runs in O(n/sup 2//p/sup 2/+n) time an a p/spl times/p mesh and in O (n/sup 2//p/sup 2/+(n log p)/p) time on a p/sup 2/ processor hypercube (for 1/spl les/p/spl les/n). The algorithm is cost optimal on the PRAMs, on the mesh (for 1/spl les/p/spl les//spl radic/n) and on the hypercube (for 1/spl les/p/spl les/n/log n). We show that the time complexity on the EREW PRAM is time optimal.","PeriodicalId":145892,"journal":{"name":"Proceedings 11th International Parallel Processing Symposium","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A parallel algorithm for weighted distance transforms\",\"authors\":\"A. Fujiwara, M. Inoue, T. Masuzawa, H. Fujiwara\",\"doi\":\"10.1109/IPPS.1997.580934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a parallel algorithm for the weighted distance transform and the nearest feature transform of an n/spl times/n binary image. We show that the algorithm runs in O(log n) time using n/sup 2//log n processors on the EREW PRAM and in O(log log n) time using n/sup 2//log log n processors on the common CRCW PRAM. We also show that the algorithm runs in O(n/sup 2//p/sup 2/+n) time an a p/spl times/p mesh and in O (n/sup 2//p/sup 2/+(n log p)/p) time on a p/sup 2/ processor hypercube (for 1/spl les/p/spl les/n). The algorithm is cost optimal on the PRAMs, on the mesh (for 1/spl les/p/spl les//spl radic/n) and on the hypercube (for 1/spl les/p/spl les/n/log n). We show that the time complexity on the EREW PRAM is time optimal.\",\"PeriodicalId\":145892,\"journal\":{\"name\":\"Proceedings 11th International Parallel Processing Symposium\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Parallel Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPPS.1997.580934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1997.580934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种n/spl次/n二值图像的加权距离变换和最近邻特征变换的并行算法。我们证明了该算法在EREW PRAM上使用n/sup 2//log n个处理器在O(log n)时间内运行,在普通CRCW PRAM上使用n/sup 2//log log n个处理器在O(log log n)时间内运行。我们还证明了该算法在p/spl次/p网格上运行的时间为O(n/sup 2//p/sup 2/+n),在p/sup 2/处理器超立方体(对于1/spl les/p/spl les/n)上运行的时间为O(n/sup 2//p/sup 2/+(n log p)/p)。该算法在PRAM、网格(1/spl les/p/spl les//spl径向/n)和超立方体(1/spl les/p/spl les/n/log n)上的成本最优,并证明了EREW PRAM的时间复杂度是时间最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parallel algorithm for weighted distance transforms
This paper presents a parallel algorithm for the weighted distance transform and the nearest feature transform of an n/spl times/n binary image. We show that the algorithm runs in O(log n) time using n/sup 2//log n processors on the EREW PRAM and in O(log log n) time using n/sup 2//log log n processors on the common CRCW PRAM. We also show that the algorithm runs in O(n/sup 2//p/sup 2/+n) time an a p/spl times/p mesh and in O (n/sup 2//p/sup 2/+(n log p)/p) time on a p/sup 2/ processor hypercube (for 1/spl les/p/spl les/n). The algorithm is cost optimal on the PRAMs, on the mesh (for 1/spl les/p/spl les//spl radic/n) and on the hypercube (for 1/spl les/p/spl les/n/log n). We show that the time complexity on the EREW PRAM is time optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信