记录链接:相似性度量和算法

Nick Koudas, Sunita Sarawagi, D. Srivastava
{"title":"记录链接:相似性度量和算法","authors":"Nick Koudas, Sunita Sarawagi, D. Srivastava","doi":"10.1145/1142473.1142599","DOIUrl":null,"url":null,"abstract":"This tutorial provides a comprehensive and cohesive overview of the key research results in the area of record linkage methodologies and algorithms for identifying approximate duplicate records, and available tools for this purpose. It encompasses techniques introduced in several communities including databases, information retrieval, statistics and machine learning. It aims to identify similarities and differences across the techniques as well as their merits and limitations.","PeriodicalId":416090,"journal":{"name":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"346","resultStr":"{\"title\":\"Record linkage: similarity measures and algorithms\",\"authors\":\"Nick Koudas, Sunita Sarawagi, D. Srivastava\",\"doi\":\"10.1145/1142473.1142599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This tutorial provides a comprehensive and cohesive overview of the key research results in the area of record linkage methodologies and algorithms for identifying approximate duplicate records, and available tools for this purpose. It encompasses techniques introduced in several communities including databases, information retrieval, statistics and machine learning. It aims to identify similarities and differences across the techniques as well as their merits and limitations.\",\"PeriodicalId\":416090,\"journal\":{\"name\":\"Proceedings of the 2006 ACM SIGMOD international conference on Management of data\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"346\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2006 ACM SIGMOD international conference on Management of data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1142473.1142599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1142473.1142599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 346

摘要

本教程提供了记录链接方法和用于识别近似重复记录的算法领域的关键研究成果的全面和连贯的概述,以及用于此目的的可用工具。它包含了几个社区引入的技术,包括数据库、信息检索、统计学和机器学习。它旨在识别这些技术之间的异同,以及它们的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Record linkage: similarity measures and algorithms
This tutorial provides a comprehensive and cohesive overview of the key research results in the area of record linkage methodologies and algorithms for identifying approximate duplicate records, and available tools for this purpose. It encompasses techniques introduced in several communities including databases, information retrieval, statistics and machine learning. It aims to identify similarities and differences across the techniques as well as their merits and limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信