Phasmatodea种群进化算法及其在变长增量极限学习机中的应用

Pei-Cheng Song, S. Chu, Jeng-Shyang Pan, Hong-Mei Yang
{"title":"Phasmatodea种群进化算法及其在变长增量极限学习机中的应用","authors":"Pei-Cheng Song, S. Chu, Jeng-Shyang Pan, Hong-Mei Yang","doi":"10.1109/IAI50351.2020.9262236","DOIUrl":null,"url":null,"abstract":"Extreme learning machine (ELM) is an effective classification and prediction learning algorithm based on feedforward neural network (FNN). This paper presents the Phasmatodea (stick insect) population evolution algorithm (PPE), which is different from other algorithms, in which each solution represents a population and has two attributes: quantity and growth rate. Combining the concept of similar evolution and the model of population competition, it is a new local search method. The algorithm is compared with the other algorithms on benchmark functions and engineering problems. Then use it to enhance a variant of the ELM model. The results show that the proposed algorithm has a certain competitiveness.","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Phasmatodea population evolution algorithm and its application in length-changeable incremental extreme learning machine\",\"authors\":\"Pei-Cheng Song, S. Chu, Jeng-Shyang Pan, Hong-Mei Yang\",\"doi\":\"10.1109/IAI50351.2020.9262236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme learning machine (ELM) is an effective classification and prediction learning algorithm based on feedforward neural network (FNN). This paper presents the Phasmatodea (stick insect) population evolution algorithm (PPE), which is different from other algorithms, in which each solution represents a population and has two attributes: quantity and growth rate. Combining the concept of similar evolution and the model of population competition, it is a new local search method. The algorithm is compared with the other algorithms on benchmark functions and engineering problems. Then use it to enhance a variant of the ELM model. The results show that the proposed algorithm has a certain competitiveness.\",\"PeriodicalId\":137183,\"journal\":{\"name\":\"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI50351.2020.9262236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

极限学习机(ELM)是一种基于前馈神经网络(FNN)的有效分类和预测学习算法。本文提出了一种不同于其他算法的竹节虫种群进化算法(PPE),它的每个解代表一个种群,并具有数量和生长速度两个属性。将相似进化的概念与种群竞争模型相结合,提出了一种新的局部搜索方法。在基准函数和工程问题上与其他算法进行了比较。然后用它来增强ELM模型的一个变体。结果表明,该算法具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phasmatodea population evolution algorithm and its application in length-changeable incremental extreme learning machine
Extreme learning machine (ELM) is an effective classification and prediction learning algorithm based on feedforward neural network (FNN). This paper presents the Phasmatodea (stick insect) population evolution algorithm (PPE), which is different from other algorithms, in which each solution represents a population and has two attributes: quantity and growth rate. Combining the concept of similar evolution and the model of population competition, it is a new local search method. The algorithm is compared with the other algorithms on benchmark functions and engineering problems. Then use it to enhance a variant of the ELM model. The results show that the proposed algorithm has a certain competitiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信