基于粗糙集的gds多类型偏好信息集成方法

Tian Fei, Liu Lu, You Weijia
{"title":"基于粗糙集的gds多类型偏好信息集成方法","authors":"Tian Fei, Liu Lu, You Weijia","doi":"10.1109/GSIS.2007.4443406","DOIUrl":null,"url":null,"abstract":"Two problems in multi-attribute group decision process are studied: integration of multi-types of preference information and making use of given decisions. And a GDSS model based on rough set is proposed, which includes seven common ways for representing preference information. An improved Sem Naive Scaler Algorithm is also suggested to decentralize the information in the rough set table. Finally, rules based on dominance-based rough set theory are applied to the information table to rank all the alternatives.","PeriodicalId":445155,"journal":{"name":"2007 IEEE International Conference on Grey Systems and Intelligent Services","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rough set based GDSS approach to integrate multi-type preference information\",\"authors\":\"Tian Fei, Liu Lu, You Weijia\",\"doi\":\"10.1109/GSIS.2007.4443406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two problems in multi-attribute group decision process are studied: integration of multi-types of preference information and making use of given decisions. And a GDSS model based on rough set is proposed, which includes seven common ways for representing preference information. An improved Sem Naive Scaler Algorithm is also suggested to decentralize the information in the rough set table. Finally, rules based on dominance-based rough set theory are applied to the information table to rank all the alternatives.\",\"PeriodicalId\":445155,\"journal\":{\"name\":\"2007 IEEE International Conference on Grey Systems and Intelligent Services\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Grey Systems and Intelligent Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSIS.2007.4443406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Grey Systems and Intelligent Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSIS.2007.4443406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了多属性群体决策过程中的两个问题:多类型偏好信息的整合和给定决策的利用。提出了一种基于粗糙集的gds模型,该模型包含7种常用的偏好信息表示方法。提出了一种改进的Sem朴素标量算法来分散粗糙集表中的信息。最后,将基于优势粗糙集理论的规则应用到信息表中,对所有备选方案进行排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rough set based GDSS approach to integrate multi-type preference information
Two problems in multi-attribute group decision process are studied: integration of multi-types of preference information and making use of given decisions. And a GDSS model based on rough set is proposed, which includes seven common ways for representing preference information. An improved Sem Naive Scaler Algorithm is also suggested to decentralize the information in the rough set table. Finally, rules based on dominance-based rough set theory are applied to the information table to rank all the alternatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信