基于尺度不变特征变换、信念传播和随机抽样一致性的超分辨率图像配准

Haidawati Nasir, V. Stanković, S. Marshall
{"title":"基于尺度不变特征变换、信念传播和随机抽样一致性的超分辨率图像配准","authors":"Haidawati Nasir, V. Stanković, S. Marshall","doi":"10.5281/ZENODO.42086","DOIUrl":null,"url":null,"abstract":"Accurate image registration is crucial for the effectiveness of super resolution. In super resolution, image registration is used to find the disparity between low resolution images. In this paper an image registration approach based on a combination of Scale Invariant Feature Transform (SIFT), Belief Propagation (BP) and Random Sampling Consensus (RANSAC) is proposed for super resolution. The SIFT algorithm is used to detect and extract the local features in images, BP is used to match the features while RANSAC is adopted to filter out the mismatched points and then estimate the transformation matrix. The proposed method is compared with traditional SIFT to verify its accuracy and stability. Finally, the result of using the proposed approach in the super resolution application is given.","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Image registration for super resolution using scale invariant feature transform, belief propagation and random sampling consensus\",\"authors\":\"Haidawati Nasir, V. Stanković, S. Marshall\",\"doi\":\"10.5281/ZENODO.42086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate image registration is crucial for the effectiveness of super resolution. In super resolution, image registration is used to find the disparity between low resolution images. In this paper an image registration approach based on a combination of Scale Invariant Feature Transform (SIFT), Belief Propagation (BP) and Random Sampling Consensus (RANSAC) is proposed for super resolution. The SIFT algorithm is used to detect and extract the local features in images, BP is used to match the features while RANSAC is adopted to filter out the mismatched points and then estimate the transformation matrix. The proposed method is compared with traditional SIFT to verify its accuracy and stability. Finally, the result of using the proposed approach in the super resolution application is given.\",\"PeriodicalId\":409817,\"journal\":{\"name\":\"2010 18th European Signal Processing Conference\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 18th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.42086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

准确的图像配准是保证超分辨效果的关键。在超分辨率下,采用图像配准来寻找低分辨率图像之间的差异。提出了一种基于尺度不变特征变换(SIFT)、信念传播(BP)和随机抽样一致性(RANSAC)相结合的超分辨率图像配准方法。采用SIFT算法检测和提取图像中的局部特征,采用BP算法对特征进行匹配,采用RANSAC算法过滤掉不匹配点,然后估计变换矩阵。通过与传统SIFT的比较,验证了该方法的准确性和稳定性。最后给出了该方法在超分辨率图像中的应用结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image registration for super resolution using scale invariant feature transform, belief propagation and random sampling consensus
Accurate image registration is crucial for the effectiveness of super resolution. In super resolution, image registration is used to find the disparity between low resolution images. In this paper an image registration approach based on a combination of Scale Invariant Feature Transform (SIFT), Belief Propagation (BP) and Random Sampling Consensus (RANSAC) is proposed for super resolution. The SIFT algorithm is used to detect and extract the local features in images, BP is used to match the features while RANSAC is adopted to filter out the mismatched points and then estimate the transformation matrix. The proposed method is compared with traditional SIFT to verify its accuracy and stability. Finally, the result of using the proposed approach in the super resolution application is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信