非线性频率标度的时频表示。共轨空间和离散化

N. Holighaus, P. Balázs, Christoph Wiesmeyr
{"title":"非线性频率标度的时频表示。共轨空间和离散化","authors":"N. Holighaus, P. Balázs, Christoph Wiesmeyr","doi":"10.1109/SAMPTA.2015.7148865","DOIUrl":null,"url":null,"abstract":"The fixed time-frequency resolution of the short-time Fourier transform has often been considered a major drawback. In this contribution we review recent results on a class of time-frequency transforms that adapt to a large class of frequency scales in the same sense that wavelet transforms are adapted to a logarithmic scale. In particular, we show that each transform in this class of warped time-frequency representations is a tight continuous frame satisfying orthogonality relations similar to Moyal's formula. Moreover, they satisfy the prerequisites of generalized coorbit theory, giving rise to coorbit spaces and associated discrete representations, i.e. atomic decompositions and Banach frames.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time-frequency representations for nonlinear frequency scales — Coorbit spaces and discretization\",\"authors\":\"N. Holighaus, P. Balázs, Christoph Wiesmeyr\",\"doi\":\"10.1109/SAMPTA.2015.7148865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fixed time-frequency resolution of the short-time Fourier transform has often been considered a major drawback. In this contribution we review recent results on a class of time-frequency transforms that adapt to a large class of frequency scales in the same sense that wavelet transforms are adapted to a logarithmic scale. In particular, we show that each transform in this class of warped time-frequency representations is a tight continuous frame satisfying orthogonality relations similar to Moyal's formula. Moreover, they satisfy the prerequisites of generalized coorbit theory, giving rise to coorbit spaces and associated discrete representations, i.e. atomic decompositions and Banach frames.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

短时傅里叶变换的固定时频分辨率经常被认为是一个主要的缺点。在这篇文章中,我们回顾了最近关于一类时频变换的结果,这些时频变换适用于大的频率尺度,就像小波变换适用于对数尺度一样。特别地,我们证明了这类扭曲时频表示中的每个变换都是一个紧连续的框架,满足类似于Moyal公式的正交关系。此外,它们满足广义共轨理论的先决条件,从而产生了共轨空间及其相关的离散表示,即原子分解和Banach框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-frequency representations for nonlinear frequency scales — Coorbit spaces and discretization
The fixed time-frequency resolution of the short-time Fourier transform has often been considered a major drawback. In this contribution we review recent results on a class of time-frequency transforms that adapt to a large class of frequency scales in the same sense that wavelet transforms are adapted to a logarithmic scale. In particular, we show that each transform in this class of warped time-frequency representations is a tight continuous frame satisfying orthogonality relations similar to Moyal's formula. Moreover, they satisfy the prerequisites of generalized coorbit theory, giving rise to coorbit spaces and associated discrete representations, i.e. atomic decompositions and Banach frames.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信