V. Martsenyuk, L. Babinets, Y. Dronyak, Olha Paslay, O. Veselska, K. Warwas, I. Andrushchak, A. Kłos-Witkowska
{"title":"以共病状态医学鉴别诊断为目标的机器学习模型的发展","authors":"V. Martsenyuk, L. Babinets, Y. Dronyak, Olha Paslay, O. Veselska, K. Warwas, I. Andrushchak, A. Kłos-Witkowska","doi":"10.1109/IDAACS.2019.8924345","DOIUrl":null,"url":null,"abstract":"The purpose of the work is to develop mathematical and software background for the development of machine learning (ML) models in differential diagnostics of comorbid states. Flowchart includes basic steps of ML model development, including the statement of task, the choice of method (learner), setting its parameters and model assessment. The problems dealing with dimension reduction which arise often in differential diagnostics of comorbid states are highlighted and solved with help of modified PCA method. As an example we consider the problem of development of classifier for chronic pancreatitis combined with ascaridosis where we solve all tasks of ML model development. With help of benchmark of learners in the package mlr we compare different methods of ML when applying them in differential diagnostics of comorbid states.","PeriodicalId":415006,"journal":{"name":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Development of Machine Learning Models with Aim of Medical Differential Diagnostics of the Comorbid States\",\"authors\":\"V. Martsenyuk, L. Babinets, Y. Dronyak, Olha Paslay, O. Veselska, K. Warwas, I. Andrushchak, A. Kłos-Witkowska\",\"doi\":\"10.1109/IDAACS.2019.8924345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the work is to develop mathematical and software background for the development of machine learning (ML) models in differential diagnostics of comorbid states. Flowchart includes basic steps of ML model development, including the statement of task, the choice of method (learner), setting its parameters and model assessment. The problems dealing with dimension reduction which arise often in differential diagnostics of comorbid states are highlighted and solved with help of modified PCA method. As an example we consider the problem of development of classifier for chronic pancreatitis combined with ascaridosis where we solve all tasks of ML model development. With help of benchmark of learners in the package mlr we compare different methods of ML when applying them in differential diagnostics of comorbid states.\",\"PeriodicalId\":415006,\"journal\":{\"name\":\"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAACS.2019.8924345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2019.8924345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Development of Machine Learning Models with Aim of Medical Differential Diagnostics of the Comorbid States
The purpose of the work is to develop mathematical and software background for the development of machine learning (ML) models in differential diagnostics of comorbid states. Flowchart includes basic steps of ML model development, including the statement of task, the choice of method (learner), setting its parameters and model assessment. The problems dealing with dimension reduction which arise often in differential diagnostics of comorbid states are highlighted and solved with help of modified PCA method. As an example we consider the problem of development of classifier for chronic pancreatitis combined with ascaridosis where we solve all tasks of ML model development. With help of benchmark of learners in the package mlr we compare different methods of ML when applying them in differential diagnostics of comorbid states.