{"title":"基于压缩感知的短脉冲探地雷达Stolt偏移成像","authors":"L. Qu, Z. Li, A. Fathy","doi":"10.1109/IGARSS39084.2020.9323713","DOIUrl":null,"url":null,"abstract":"An innovative compressive sensing (CS) based Stolt migration imaging algorithm for short-pulse ground-penetrating radar (GPR) has been developed and will be presented here. The traditional Stolt migration algorithm requires a wideband signal and large antenna array for implementing a high-resolution imaging reconstruction, which traditionally suffers from high sampling rate requirements and long time for data collection. On the contrary, the proposed CS-based Stolt migration imaging algorithm establishes a sparse transform between the raw measurement data and the migrated imaging results, it considers the physical propagation process of the electromagnetic wave and does not require a prior knowledge of the transmitted pulse. This imaging algorithm can provide better imaging quality; while reducing both the required sampling rate and number of measurements. The accurate imaging results from the numerical simulation data presented here verified the effectiveness and validity of the proposed imaging algorithm.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stolt Migration Imaging for Short-Pulse Ground-Penetrating Radar Based on Compressive Sensing\",\"authors\":\"L. Qu, Z. Li, A. Fathy\",\"doi\":\"10.1109/IGARSS39084.2020.9323713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An innovative compressive sensing (CS) based Stolt migration imaging algorithm for short-pulse ground-penetrating radar (GPR) has been developed and will be presented here. The traditional Stolt migration algorithm requires a wideband signal and large antenna array for implementing a high-resolution imaging reconstruction, which traditionally suffers from high sampling rate requirements and long time for data collection. On the contrary, the proposed CS-based Stolt migration imaging algorithm establishes a sparse transform between the raw measurement data and the migrated imaging results, it considers the physical propagation process of the electromagnetic wave and does not require a prior knowledge of the transmitted pulse. This imaging algorithm can provide better imaging quality; while reducing both the required sampling rate and number of measurements. The accurate imaging results from the numerical simulation data presented here verified the effectiveness and validity of the proposed imaging algorithm.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9323713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stolt Migration Imaging for Short-Pulse Ground-Penetrating Radar Based on Compressive Sensing
An innovative compressive sensing (CS) based Stolt migration imaging algorithm for short-pulse ground-penetrating radar (GPR) has been developed and will be presented here. The traditional Stolt migration algorithm requires a wideband signal and large antenna array for implementing a high-resolution imaging reconstruction, which traditionally suffers from high sampling rate requirements and long time for data collection. On the contrary, the proposed CS-based Stolt migration imaging algorithm establishes a sparse transform between the raw measurement data and the migrated imaging results, it considers the physical propagation process of the electromagnetic wave and does not require a prior knowledge of the transmitted pulse. This imaging algorithm can provide better imaging quality; while reducing both the required sampling rate and number of measurements. The accurate imaging results from the numerical simulation data presented here verified the effectiveness and validity of the proposed imaging algorithm.