基于姿态估计的鲁棒人体身份匿名化

Hengyuan Zhang, Jing-Yan Liao, D. Paz, Henrik I. Christensen
{"title":"基于姿态估计的鲁棒人体身份匿名化","authors":"Hengyuan Zhang, Jing-Yan Liao, D. Paz, Henrik I. Christensen","doi":"10.1109/CASE49997.2022.9926568","DOIUrl":null,"url":null,"abstract":"Many outdoor autonomous mobile platforms require more human identity anonymized data to power their data-driven algorithms. The human identity anonymization should be robust so that less manual intervention is needed, which remains a challenge for current face detection and anonymization systems. In this paper, we propose to use the skeleton generated from the state-of-the-art human pose estimation model to help localize human heads. We develop criteria to evaluate the performance and compare it with the face detection approach. We demonstrate that the proposed algorithm can reduce missed faces and thus better protect the identity information for the pedestrians. We also develop a confidence-based fusion method to further improve the performance.","PeriodicalId":325778,"journal":{"name":"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Human Identity Anonymization using Pose Estimation\",\"authors\":\"Hengyuan Zhang, Jing-Yan Liao, D. Paz, Henrik I. Christensen\",\"doi\":\"10.1109/CASE49997.2022.9926568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many outdoor autonomous mobile platforms require more human identity anonymized data to power their data-driven algorithms. The human identity anonymization should be robust so that less manual intervention is needed, which remains a challenge for current face detection and anonymization systems. In this paper, we propose to use the skeleton generated from the state-of-the-art human pose estimation model to help localize human heads. We develop criteria to evaluate the performance and compare it with the face detection approach. We demonstrate that the proposed algorithm can reduce missed faces and thus better protect the identity information for the pedestrians. We also develop a confidence-based fusion method to further improve the performance.\",\"PeriodicalId\":325778,\"journal\":{\"name\":\"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49997.2022.9926568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49997.2022.9926568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多户外自主移动平台需要更多的人类身份匿名数据来支持他们的数据驱动算法。人类身份匿名化必须具有鲁棒性,以减少人工干预,这是当前人脸检测和匿名化系统面临的一个挑战。在本文中,我们建议使用最先进的人体姿态估计模型生成的骨骼来帮助定位人类头部。我们制定了评估性能的标准,并将其与人脸检测方法进行比较。实验证明,该算法可以减少行人的人脸缺失,从而更好地保护行人的身份信息。我们还开发了一种基于置信度的融合方法来进一步提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Human Identity Anonymization using Pose Estimation
Many outdoor autonomous mobile platforms require more human identity anonymized data to power their data-driven algorithms. The human identity anonymization should be robust so that less manual intervention is needed, which remains a challenge for current face detection and anonymization systems. In this paper, we propose to use the skeleton generated from the state-of-the-art human pose estimation model to help localize human heads. We develop criteria to evaluate the performance and compare it with the face detection approach. We demonstrate that the proposed algorithm can reduce missed faces and thus better protect the identity information for the pedestrians. We also develop a confidence-based fusion method to further improve the performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信