独立集多面体的可拓复杂度

Mika Göös, Rahul Jain, Thomas Watson
{"title":"独立集多面体的可拓复杂度","authors":"Mika Göös, Rahul Jain, Thomas Watson","doi":"10.1137/16M109884X","DOIUrl":null,"url":null,"abstract":"We exhibit an n-node graph whose independent set polytope requires extended formulations of size exponential in Ω(n/log n). Previously, no explicit examples of n-dimensional 0/1-polytopes were known with extension complexity larger than exponential in Θ(√n). Our construction is inspired by a relatively little-known connection between extended formulations and (monotone) circuit depth.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Extension Complexity of Independent Set Polytopes\",\"authors\":\"Mika Göös, Rahul Jain, Thomas Watson\",\"doi\":\"10.1137/16M109884X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit an n-node graph whose independent set polytope requires extended formulations of size exponential in Ω(n/log n). Previously, no explicit examples of n-dimensional 0/1-polytopes were known with extension complexity larger than exponential in Θ(√n). Our construction is inspired by a relatively little-known connection between extended formulations and (monotone) circuit depth.\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/16M109884X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/16M109884X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

我们展示了一个n节点图,其独立集多边形需要在Ω(n/log n)中扩展成指数大小的公式。以前,在Θ(√n)中没有已知的n维0/1多边形的扩展复杂度大于指数的显式例子。我们的构造受到扩展公式和(单调)电路深度之间相对鲜为人知的联系的启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension Complexity of Independent Set Polytopes
We exhibit an n-node graph whose independent set polytope requires extended formulations of size exponential in Ω(n/log n). Previously, no explicit examples of n-dimensional 0/1-polytopes were known with extension complexity larger than exponential in Θ(√n). Our construction is inspired by a relatively little-known connection between extended formulations and (monotone) circuit depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信