J. Darbon, Alexandre Cunha, T. Chan, S. Osher, G. Jensen
{"title":"快速非局部滤波在电子冷冻显微镜中的应用","authors":"J. Darbon, Alexandre Cunha, T. Chan, S. Osher, G. Jensen","doi":"10.1109/ISBI.2008.4541250","DOIUrl":null,"url":null,"abstract":"We present an efficient algorithm for nonlocal image filtering with applications in electron cryomicroscopy. Our denoising algorithm is a rewriting of the recently proposed nonlocal mean filter. It builds on the separable property of neighborhood filtering to offer a fast parallel and vectorized implementation in contemporary shared memory computer architectures while reducing the theoretical computational complexity of the original filter. In practice, our approach is much faster than a serial, non-vectorized implementation and it scales linearly with image size. We demonstrate its efficiency in data sets from Caulobacter crescentus tomograms and a cryoimage containing viruses and provide visual evidences attesting the remarkable quality of the nonlocal means scheme in the context of cryoimaging. With such development we provide biologists with an attractive filtering tool to facilitate their scientific discoveries.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"280","resultStr":"{\"title\":\"Fast nonlocal filtering applied to electron cryomicroscopy\",\"authors\":\"J. Darbon, Alexandre Cunha, T. Chan, S. Osher, G. Jensen\",\"doi\":\"10.1109/ISBI.2008.4541250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an efficient algorithm for nonlocal image filtering with applications in electron cryomicroscopy. Our denoising algorithm is a rewriting of the recently proposed nonlocal mean filter. It builds on the separable property of neighborhood filtering to offer a fast parallel and vectorized implementation in contemporary shared memory computer architectures while reducing the theoretical computational complexity of the original filter. In practice, our approach is much faster than a serial, non-vectorized implementation and it scales linearly with image size. We demonstrate its efficiency in data sets from Caulobacter crescentus tomograms and a cryoimage containing viruses and provide visual evidences attesting the remarkable quality of the nonlocal means scheme in the context of cryoimaging. With such development we provide biologists with an attractive filtering tool to facilitate their scientific discoveries.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"280\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast nonlocal filtering applied to electron cryomicroscopy
We present an efficient algorithm for nonlocal image filtering with applications in electron cryomicroscopy. Our denoising algorithm is a rewriting of the recently proposed nonlocal mean filter. It builds on the separable property of neighborhood filtering to offer a fast parallel and vectorized implementation in contemporary shared memory computer architectures while reducing the theoretical computational complexity of the original filter. In practice, our approach is much faster than a serial, non-vectorized implementation and it scales linearly with image size. We demonstrate its efficiency in data sets from Caulobacter crescentus tomograms and a cryoimage containing viruses and provide visual evidences attesting the remarkable quality of the nonlocal means scheme in the context of cryoimaging. With such development we provide biologists with an attractive filtering tool to facilitate their scientific discoveries.