完全预混燃烧系统线性化欧拉方程的等熵公式

Pedro Romero Vega, T. Hofmeister, Gerrit Heilmann, C. Hirsch, T. Sattelmayer
{"title":"完全预混燃烧系统线性化欧拉方程的等熵公式","authors":"Pedro Romero Vega, T. Hofmeister, Gerrit Heilmann, C. Hirsch, T. Sattelmayer","doi":"10.1115/gt2021-60055","DOIUrl":null,"url":null,"abstract":"\n The linearized Euler equations (LEE) provide an accurate — yet computationally efficient — description of propagation and damping of acoustic waves in geometrically complex, non-uniform reactive mean flows like those found in gas turbine combustion chambers. However, direct application of the LEE to perfectly premixed combustors with highly turbulent flows overestimates entropy waves as the LEE solution inherently contains coupled acoustic, vortical and entropy modes. In the present work, the LEE are decomposed into isentropic and non-isentropic parts ultimately obtaining a simplified set of isentropic LEE, in which only acoustic and vortical modes propagate. In the isentropic LEE, only continuity and momentum equations need to be solved. The energy equation is replaced by the isentropic relation between acoustic pressure and density. From the decomposition, the unsteady heat release term, which acts as a source in the energy equation, naturally arises as a source in the continuity equation. This way, the thermoacoustic coupling is still preserved in the isentropic formulation. The derived isentropic set of equations is first tested with a one-dimensional benchmark configuration consisting of a mean flow temperature jump, non-uniform mean flow velocity and unsteady heat release sources. Solutions of the non-isentropic and isentropic set of LEE are compared and the avoidance of entropy waves proved. Finally, isentropic LEE are used for reproducing the frequency of the self-excited first transversal mode of a lab-scale swirl-stabilized premixed combustor. Furthermore, isentropic and non-isentropic LEE solutions are compared. The non-isentropic LEE yield too high levels of entropy at the combustor exit that may explain the increased damping rate of the non-isentropic LEE solution compared to the isentropic LEE solution. This shows the relevance of isentropic LEE for correctly predicting thermoacoustic stability limits at high frequencies in relevant industrial applications.","PeriodicalId":395231,"journal":{"name":"Volume 3B: Combustion, Fuels, and Emissions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isentropic Formulation of the Linearized Euler Equations For Perfectly Premixed Combustion Systems\",\"authors\":\"Pedro Romero Vega, T. Hofmeister, Gerrit Heilmann, C. Hirsch, T. Sattelmayer\",\"doi\":\"10.1115/gt2021-60055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The linearized Euler equations (LEE) provide an accurate — yet computationally efficient — description of propagation and damping of acoustic waves in geometrically complex, non-uniform reactive mean flows like those found in gas turbine combustion chambers. However, direct application of the LEE to perfectly premixed combustors with highly turbulent flows overestimates entropy waves as the LEE solution inherently contains coupled acoustic, vortical and entropy modes. In the present work, the LEE are decomposed into isentropic and non-isentropic parts ultimately obtaining a simplified set of isentropic LEE, in which only acoustic and vortical modes propagate. In the isentropic LEE, only continuity and momentum equations need to be solved. The energy equation is replaced by the isentropic relation between acoustic pressure and density. From the decomposition, the unsteady heat release term, which acts as a source in the energy equation, naturally arises as a source in the continuity equation. This way, the thermoacoustic coupling is still preserved in the isentropic formulation. The derived isentropic set of equations is first tested with a one-dimensional benchmark configuration consisting of a mean flow temperature jump, non-uniform mean flow velocity and unsteady heat release sources. Solutions of the non-isentropic and isentropic set of LEE are compared and the avoidance of entropy waves proved. Finally, isentropic LEE are used for reproducing the frequency of the self-excited first transversal mode of a lab-scale swirl-stabilized premixed combustor. Furthermore, isentropic and non-isentropic LEE solutions are compared. The non-isentropic LEE yield too high levels of entropy at the combustor exit that may explain the increased damping rate of the non-isentropic LEE solution compared to the isentropic LEE solution. This shows the relevance of isentropic LEE for correctly predicting thermoacoustic stability limits at high frequencies in relevant industrial applications.\",\"PeriodicalId\":395231,\"journal\":{\"name\":\"Volume 3B: Combustion, Fuels, and Emissions\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3B: Combustion, Fuels, and Emissions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-60055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3B: Combustion, Fuels, and Emissions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-60055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

线性化的欧拉方程(LEE)提供了一种精确且计算效率高的描述,描述了声波在几何复杂的非均匀反应平均流(如燃气轮机燃烧室中的流动)中的传播和阻尼。然而,将LEE直接应用于具有高湍流流动的完全预混燃烧室,会高估熵波,因为LEE解固有地包含耦合的声学、垂直和熵模式。在本工作中,将等效等效波分解为等熵和非等熵两部分,最终得到一组简化的等熵等效等效波,其中只传播声模和涡旋模。在等熵LEE中,只需要求解连续性方程和动量方程。用声压与密度的等熵关系代替了能量方程。从分解中,在能量方程中充当源的非定常放热项自然成为连续性方程中的源。这样,热声耦合仍然保留在等熵公式中。首先用由平均流动温度跳变、非均匀平均流速和非定常放热源组成的一维基准配置对导出的等熵方程组进行了验证。比较了非等熵集和等熵集的解,证明了熵波的避免。最后,利用等熵LEE再现了实验室规模旋流稳定预混燃烧室自激第一横模的频率。此外,还比较了等熵和非等熵LEE解。非等熵LEE在燃烧室出口产生了过高的熵,这可能解释了与等熵LEE溶液相比,非等熵LEE溶液阻尼率增加的原因。这显示了等熵LEE在相关工业应用中正确预测高频热声稳定性极限的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isentropic Formulation of the Linearized Euler Equations For Perfectly Premixed Combustion Systems
The linearized Euler equations (LEE) provide an accurate — yet computationally efficient — description of propagation and damping of acoustic waves in geometrically complex, non-uniform reactive mean flows like those found in gas turbine combustion chambers. However, direct application of the LEE to perfectly premixed combustors with highly turbulent flows overestimates entropy waves as the LEE solution inherently contains coupled acoustic, vortical and entropy modes. In the present work, the LEE are decomposed into isentropic and non-isentropic parts ultimately obtaining a simplified set of isentropic LEE, in which only acoustic and vortical modes propagate. In the isentropic LEE, only continuity and momentum equations need to be solved. The energy equation is replaced by the isentropic relation between acoustic pressure and density. From the decomposition, the unsteady heat release term, which acts as a source in the energy equation, naturally arises as a source in the continuity equation. This way, the thermoacoustic coupling is still preserved in the isentropic formulation. The derived isentropic set of equations is first tested with a one-dimensional benchmark configuration consisting of a mean flow temperature jump, non-uniform mean flow velocity and unsteady heat release sources. Solutions of the non-isentropic and isentropic set of LEE are compared and the avoidance of entropy waves proved. Finally, isentropic LEE are used for reproducing the frequency of the self-excited first transversal mode of a lab-scale swirl-stabilized premixed combustor. Furthermore, isentropic and non-isentropic LEE solutions are compared. The non-isentropic LEE yield too high levels of entropy at the combustor exit that may explain the increased damping rate of the non-isentropic LEE solution compared to the isentropic LEE solution. This shows the relevance of isentropic LEE for correctly predicting thermoacoustic stability limits at high frequencies in relevant industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信