使用Phoenix++实现一个高性能的推荐系统

Chongxiao Cao, Fengguang Song, D. Waddington
{"title":"使用Phoenix++实现一个高性能的推荐系统","authors":"Chongxiao Cao, Fengguang Song, D. Waddington","doi":"10.1109/ICITST.2013.6750200","DOIUrl":null,"url":null,"abstract":"Recommendation systems are important big data applications that are used in many business sectors of the global economy. While many users utilize Hadoop-like MapReduce systems to implement recommendation systems, we utilize the high-performance shared-memory MapReduce system Phoenix++ [1] to design a faster recommendation engine. In this paper, we design a distributed out-of-core recommendation algorithm to maximize the usage of main memory, and devise a framework that invokes Phoenix++ as a sub-module to achieve high performance. The design of the framework can be extended to support different types of big data applications. The experiments on Amazon Elastic Compute Cloud (Amazon EC2) demonstrate that our new recommendation system can be faster than its Hadoop counterpart by up to 225% without losing recommendation quality.","PeriodicalId":246884,"journal":{"name":"8th International Conference for Internet Technology and Secured Transactions (ICITST-2013)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Implementing a high-performance recommendation system using Phoenix++\",\"authors\":\"Chongxiao Cao, Fengguang Song, D. Waddington\",\"doi\":\"10.1109/ICITST.2013.6750200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation systems are important big data applications that are used in many business sectors of the global economy. While many users utilize Hadoop-like MapReduce systems to implement recommendation systems, we utilize the high-performance shared-memory MapReduce system Phoenix++ [1] to design a faster recommendation engine. In this paper, we design a distributed out-of-core recommendation algorithm to maximize the usage of main memory, and devise a framework that invokes Phoenix++ as a sub-module to achieve high performance. The design of the framework can be extended to support different types of big data applications. The experiments on Amazon Elastic Compute Cloud (Amazon EC2) demonstrate that our new recommendation system can be faster than its Hadoop counterpart by up to 225% without losing recommendation quality.\",\"PeriodicalId\":246884,\"journal\":{\"name\":\"8th International Conference for Internet Technology and Secured Transactions (ICITST-2013)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"8th International Conference for Internet Technology and Secured Transactions (ICITST-2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITST.2013.6750200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference for Internet Technology and Secured Transactions (ICITST-2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITST.2013.6750200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

推荐系统是重要的大数据应用程序,在全球经济的许多业务部门都有使用。当许多用户使用类似hadoop的MapReduce系统来实现推荐系统时,我们使用高性能共享内存MapReduce系统Phoenix++[1]来设计一个更快的推荐引擎。在本文中,我们设计了一个分布式的核外推荐算法,以最大限度地利用主内存,并设计了一个框架,调用Phoenix++作为子模块来实现高性能。框架的设计可以扩展,以支持不同类型的大数据应用。在Amazon Elastic Compute Cloud (Amazon EC2)上的实验表明,我们的新推荐系统可以比Hadoop系统快225%,而不会降低推荐质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementing a high-performance recommendation system using Phoenix++
Recommendation systems are important big data applications that are used in many business sectors of the global economy. While many users utilize Hadoop-like MapReduce systems to implement recommendation systems, we utilize the high-performance shared-memory MapReduce system Phoenix++ [1] to design a faster recommendation engine. In this paper, we design a distributed out-of-core recommendation algorithm to maximize the usage of main memory, and devise a framework that invokes Phoenix++ as a sub-module to achieve high performance. The design of the framework can be extended to support different types of big data applications. The experiments on Amazon Elastic Compute Cloud (Amazon EC2) demonstrate that our new recommendation system can be faster than its Hadoop counterpart by up to 225% without losing recommendation quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信