基于子空间学习的视频局部异常检测

Ioannis Tziakos, A. Cavallaro, Li-Qun Xu
{"title":"基于子空间学习的视频局部异常检测","authors":"Ioannis Tziakos, A. Cavallaro, Li-Qun Xu","doi":"10.1109/AVSS.2010.70","DOIUrl":null,"url":null,"abstract":"On-line abnormality detection in video without the use ofobject detection and tracking is a desirable task in surveillance.We address this problem for the case when labeledinformation about normal events is limited and informationabout abnormal events is not available. We formulatethis problem as a one-class classification, where multiplelocal novelty classifiers (detectors) are used to first learnnormal actions based on motion information and then todetect abnormal instances. Each detector is associated toa small region of interest and is trained over labeled samplesprojected on an appropriate subspace. We discover thissubspace by using both labeled and unlabeled segments.We investigate the use of subspace learning and comparetwo methodologies based on linear (Principal ComponentsAnalysis) and on non-linear subspace learning (LocalityPreserving Projections), respectively. Experimental resultson a real underground station dataset shows that the linearapproach is better suited for cases where the subspacelearning is restricted to the labeled samples, whereas thenon-linear approach is preferable in the presence of additionalunlabeled data.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Local Abnormality Detection in Video Using Subspace Learning\",\"authors\":\"Ioannis Tziakos, A. Cavallaro, Li-Qun Xu\",\"doi\":\"10.1109/AVSS.2010.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-line abnormality detection in video without the use ofobject detection and tracking is a desirable task in surveillance.We address this problem for the case when labeledinformation about normal events is limited and informationabout abnormal events is not available. We formulatethis problem as a one-class classification, where multiplelocal novelty classifiers (detectors) are used to first learnnormal actions based on motion information and then todetect abnormal instances. Each detector is associated toa small region of interest and is trained over labeled samplesprojected on an appropriate subspace. We discover thissubspace by using both labeled and unlabeled segments.We investigate the use of subspace learning and comparetwo methodologies based on linear (Principal ComponentsAnalysis) and on non-linear subspace learning (LocalityPreserving Projections), respectively. Experimental resultson a real underground station dataset shows that the linearapproach is better suited for cases where the subspacelearning is restricted to the labeled samples, whereas thenon-linear approach is preferable in the presence of additionalunlabeled data.\",\"PeriodicalId\":415758,\"journal\":{\"name\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2010.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在不使用目标检测和跟踪的情况下对视频进行在线异常检测是监控领域的理想任务。当有关正常事件的标签信息有限而有关异常事件的信息不可用时,我们会解决此问题。我们将这个问题表述为一类分类,其中使用多局部新颖性分类器(检测器)首先根据运动信息学习正常动作,然后检测异常实例。每个检测器与一个感兴趣的小区域相关联,并在投影在适当子空间上的标记样本上进行训练。我们通过使用标记段和未标记段来发现这个子空间。我们研究了子空间学习的使用,并分别比较了基于线性(主成分分析)和非线性子空间学习(局部保留投影)的两种方法。一个真实地铁站数据集的实验结果表明,线性方法更适合于子空间学习仅限于标记样本的情况,而非线性方法更适合于存在额外未标记数据的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Abnormality Detection in Video Using Subspace Learning
On-line abnormality detection in video without the use ofobject detection and tracking is a desirable task in surveillance.We address this problem for the case when labeledinformation about normal events is limited and informationabout abnormal events is not available. We formulatethis problem as a one-class classification, where multiplelocal novelty classifiers (detectors) are used to first learnnormal actions based on motion information and then todetect abnormal instances. Each detector is associated toa small region of interest and is trained over labeled samplesprojected on an appropriate subspace. We discover thissubspace by using both labeled and unlabeled segments.We investigate the use of subspace learning and comparetwo methodologies based on linear (Principal ComponentsAnalysis) and on non-linear subspace learning (LocalityPreserving Projections), respectively. Experimental resultson a real underground station dataset shows that the linearapproach is better suited for cases where the subspacelearning is restricted to the labeled samples, whereas thenon-linear approach is preferable in the presence of additionalunlabeled data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信