二值分割的残差初始跳变网络

Jigar Doshi
{"title":"二值分割的残差初始跳变网络","authors":"Jigar Doshi","doi":"10.1109/CVPRW.2018.00037","DOIUrl":null,"url":null,"abstract":"This paper summarizes our approach to the Deep Globe Road Extraction challenge 2018. In this challenge we are tasked to find road networks from satellite images. First, we explain our U-Net type baseline model for the challenge. Second, we explain a new architecture that takes in the lessons from some of the popular approaches that we call Residual Inception Skip Net. Finally, we outline our cyclic learning rate based ensembling approach which improved the overall single model performance and the final solution for submission. Our final model increases the IoU by 3 points over the baseline.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Residual Inception Skip Network for Binary Segmentation\",\"authors\":\"Jigar Doshi\",\"doi\":\"10.1109/CVPRW.2018.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper summarizes our approach to the Deep Globe Road Extraction challenge 2018. In this challenge we are tasked to find road networks from satellite images. First, we explain our U-Net type baseline model for the challenge. Second, we explain a new architecture that takes in the lessons from some of the popular approaches that we call Residual Inception Skip Net. Finally, we outline our cyclic learning rate based ensembling approach which improved the overall single model performance and the final solution for submission. Our final model increases the IoU by 3 points over the baseline.\",\"PeriodicalId\":150600,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2018.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文总结了我们在2018年Deep Globe道路提取挑战中的方法。在这个挑战中,我们的任务是从卫星图像中找到道路网络。首先,我们解释我们的U-Net型基线模型的挑战。其次,我们解释了一种新的架构,它吸取了一些流行方法的教训,我们称之为残余初始跳过网。最后,我们概述了基于循环学习率的集成方法,该方法提高了整体单个模型的性能和最终的提交解决方案。我们的最终模型将IoU在基线上增加3个点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Residual Inception Skip Network for Binary Segmentation
This paper summarizes our approach to the Deep Globe Road Extraction challenge 2018. In this challenge we are tasked to find road networks from satellite images. First, we explain our U-Net type baseline model for the challenge. Second, we explain a new architecture that takes in the lessons from some of the popular approaches that we call Residual Inception Skip Net. Finally, we outline our cyclic learning rate based ensembling approach which improved the overall single model performance and the final solution for submission. Our final model increases the IoU by 3 points over the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信