基于变分推理的Hammerstein模型鲁棒估计

Zhengya Ma, Xiaoxu Wang, Rui Li, Haoran Cui
{"title":"基于变分推理的Hammerstein模型鲁棒估计","authors":"Zhengya Ma, Xiaoxu Wang, Rui Li, Haoran Cui","doi":"10.1109/CAC57257.2022.10055938","DOIUrl":null,"url":null,"abstract":"The paper presents a robust identification method using variational inference (VI) for Hammerstein models in the presence of process noise and non-Gaussian colored measurement noise. First of all the measurements and process output are described as Student’s t and Gaussian distribution by using introduced variational parameters. Then the conjugate prior information of introduced parameters is framed for sake of a closed-loop solution. By applying the idea of VI, estimates of system parameters are got by minimizing Kullback-Leibler (KL) divergence. Finally, a numerical simulation example is used to show the effectiveness of the proposed identification method compared with the traditional method.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Estimation for Hammerstein Models Based on Variational Inference\",\"authors\":\"Zhengya Ma, Xiaoxu Wang, Rui Li, Haoran Cui\",\"doi\":\"10.1109/CAC57257.2022.10055938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a robust identification method using variational inference (VI) for Hammerstein models in the presence of process noise and non-Gaussian colored measurement noise. First of all the measurements and process output are described as Student’s t and Gaussian distribution by using introduced variational parameters. Then the conjugate prior information of introduced parameters is framed for sake of a closed-loop solution. By applying the idea of VI, estimates of system parameters are got by minimizing Kullback-Leibler (KL) divergence. Finally, a numerical simulation example is used to show the effectiveness of the proposed identification method compared with the traditional method.\",\"PeriodicalId\":287137,\"journal\":{\"name\":\"2022 China Automation Congress (CAC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 China Automation Congress (CAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAC57257.2022.10055938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10055938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对存在过程噪声和非高斯有色测量噪声的Hammerstein模型,提出了一种基于变分推理(VI)的鲁棒识别方法。首先,通过引入变分参数,将测量结果和过程输出描述为学生t分布和高斯分布。然后对引入参数的共轭先验信息进行构造,得到闭环解。应用VI的思想,通过最小化Kullback-Leibler (KL)散度得到系统参数的估计。最后,通过一个数值仿真算例,对比了该方法与传统方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Estimation for Hammerstein Models Based on Variational Inference
The paper presents a robust identification method using variational inference (VI) for Hammerstein models in the presence of process noise and non-Gaussian colored measurement noise. First of all the measurements and process output are described as Student’s t and Gaussian distribution by using introduced variational parameters. Then the conjugate prior information of introduced parameters is framed for sake of a closed-loop solution. By applying the idea of VI, estimates of system parameters are got by minimizing Kullback-Leibler (KL) divergence. Finally, a numerical simulation example is used to show the effectiveness of the proposed identification method compared with the traditional method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信