不同计算结构的性能分析:分子动力学在蛋白质组装中的应用,以微管和电子转移蛋白为例

V. Fedorov, E. Kholina, I. Kovalenko, N. Gudimchuk
{"title":"不同计算结构的性能分析:分子动力学在蛋白质组装中的应用,以微管和电子转移蛋白为例","authors":"V. Fedorov, E. Kholina, I. Kovalenko, N. Gudimchuk","doi":"10.14529/jsfi180414","DOIUrl":null,"url":null,"abstract":"All-atom molecular dynamics simulation represents a computationally challenging, but powerful approach for studying conformational changes and interactions of biomolecules and their assemblies of different kinds. Usually, the numbers of simulated particles in modern molecular dynamics studies range from thousands to tens of millions, while the simulated timescales span from nanoseconds to microseconds. For cost and computation efficiency, it is important to determine the optimal computer hardware for simulations of biomolecular systems of different sizes and timescales. Here we compare performance and scalability of 17 commercially available computational architectures, using molecular dynamics simulations of water and two different protein systems in GROMACS-5 package as computing benchmarks. We report typical single-node performance of various combinations of modern CPUs and GPUs, as well as multiple-node performance of “Lomonosov-2” supercomputer in molecular dynamics simulations of different protein systems in nanoseconds per day. These data can be used as practical guidelines for selection of optimal computer hardware for various molecular dynamics simulation tasks.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance Analysis of Different Computational Architectures: Molecular Dynamics in Application to Protein Assemblies, Illustrated by Microtubule and Electron Transfer Proteins\",\"authors\":\"V. Fedorov, E. Kholina, I. Kovalenko, N. Gudimchuk\",\"doi\":\"10.14529/jsfi180414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-atom molecular dynamics simulation represents a computationally challenging, but powerful approach for studying conformational changes and interactions of biomolecules and their assemblies of different kinds. Usually, the numbers of simulated particles in modern molecular dynamics studies range from thousands to tens of millions, while the simulated timescales span from nanoseconds to microseconds. For cost and computation efficiency, it is important to determine the optimal computer hardware for simulations of biomolecular systems of different sizes and timescales. Here we compare performance and scalability of 17 commercially available computational architectures, using molecular dynamics simulations of water and two different protein systems in GROMACS-5 package as computing benchmarks. We report typical single-node performance of various combinations of modern CPUs and GPUs, as well as multiple-node performance of “Lomonosov-2” supercomputer in molecular dynamics simulations of different protein systems in nanoseconds per day. These data can be used as practical guidelines for selection of optimal computer hardware for various molecular dynamics simulation tasks.\",\"PeriodicalId\":338883,\"journal\":{\"name\":\"Supercomput. Front. Innov.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supercomput. Front. Innov.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14529/jsfi180414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/jsfi180414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

全原子分子动力学模拟是研究不同种类生物分子及其组合的构象变化和相互作用的一种具有计算挑战性但功能强大的方法。在现代分子动力学研究中,通常模拟的粒子数从数千到数千万不等,模拟的时间尺度从纳秒到微秒不等。考虑到成本和计算效率,确定不同尺寸和时间尺度的生物分子系统模拟的最佳计算机硬件是很重要的。本文比较了17种商用计算架构的性能和可扩展性,使用GROMACS-5包中的水和两种不同蛋白质系统的分子动力学模拟作为计算基准。我们报告了现代cpu和gpu的各种组合的典型单节点性能,以及“Lomonosov-2”超级计算机在不同蛋白质系统的分子动力学模拟中的多节点性能(纳秒/天)。这些数据可以作为实际的指导方针,为各种分子动力学模拟任务选择最佳的计算机硬件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Different Computational Architectures: Molecular Dynamics in Application to Protein Assemblies, Illustrated by Microtubule and Electron Transfer Proteins
All-atom molecular dynamics simulation represents a computationally challenging, but powerful approach for studying conformational changes and interactions of biomolecules and their assemblies of different kinds. Usually, the numbers of simulated particles in modern molecular dynamics studies range from thousands to tens of millions, while the simulated timescales span from nanoseconds to microseconds. For cost and computation efficiency, it is important to determine the optimal computer hardware for simulations of biomolecular systems of different sizes and timescales. Here we compare performance and scalability of 17 commercially available computational architectures, using molecular dynamics simulations of water and two different protein systems in GROMACS-5 package as computing benchmarks. We report typical single-node performance of various combinations of modern CPUs and GPUs, as well as multiple-node performance of “Lomonosov-2” supercomputer in molecular dynamics simulations of different protein systems in nanoseconds per day. These data can be used as practical guidelines for selection of optimal computer hardware for various molecular dynamics simulation tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信