行为不等价的一般模态见证的拟线性时间计算

Thorsten Wißmann, Stefan Milius, Lutz Schröder
{"title":"行为不等价的一般模态见证的拟线性时间计算","authors":"Thorsten Wißmann, Stefan Milius, Lutz Schröder","doi":"10.46298/lmcs-18(4:6)2022","DOIUrl":null,"url":null,"abstract":"We provide a generic algorithm for constructing formulae that distinguish\nbehaviourally inequivalent states in systems of various transition types such\nas nondeterministic, probabilistic or weighted; genericity over the transition\ntype is achieved by working with coalgebras for a set functor in the paradigm\nof universal coalgebra. For every behavioural equivalence class in a given\nsystem, we construct a formula which holds precisely at the states in that\nclass. The algorithm instantiates to deterministic finite automata, transition\nsystems, labelled Markov chains, and systems of many other types. The ambient\nlogic is a modal logic featuring modalities that are generically extracted from\nthe functor; these modalities can be systematically translated into custom sets\nof modalities in a postprocessing step. The new algorithm builds on an existing\ncoalgebraic partition refinement algorithm. It runs in time $\\mathcal{O}((m+n)\n\\log n)$ on systems with $n$ states and $m$ transitions, and the same\nasymptotic bound applies to the dag size of the formulae it constructs. This\nimproves the bounds on run time and formula size compared to previous\nalgorithms even for previously known specific instances, viz. transition\nsystems and Markov chains; in particular, the best previous bound for\ntransition systems was $\\mathcal{O}(m n)$.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"505 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quasilinear-time Computation of Generic Modal Witnesses for Behavioural Inequivalence\",\"authors\":\"Thorsten Wißmann, Stefan Milius, Lutz Schröder\",\"doi\":\"10.46298/lmcs-18(4:6)2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a generic algorithm for constructing formulae that distinguish\\nbehaviourally inequivalent states in systems of various transition types such\\nas nondeterministic, probabilistic or weighted; genericity over the transition\\ntype is achieved by working with coalgebras for a set functor in the paradigm\\nof universal coalgebra. For every behavioural equivalence class in a given\\nsystem, we construct a formula which holds precisely at the states in that\\nclass. The algorithm instantiates to deterministic finite automata, transition\\nsystems, labelled Markov chains, and systems of many other types. The ambient\\nlogic is a modal logic featuring modalities that are generically extracted from\\nthe functor; these modalities can be systematically translated into custom sets\\nof modalities in a postprocessing step. The new algorithm builds on an existing\\ncoalgebraic partition refinement algorithm. It runs in time $\\\\mathcal{O}((m+n)\\n\\\\log n)$ on systems with $n$ states and $m$ transitions, and the same\\nasymptotic bound applies to the dag size of the formulae it constructs. This\\nimproves the bounds on run time and formula size compared to previous\\nalgorithms even for previously known specific instances, viz. transition\\nsystems and Markov chains; in particular, the best previous bound for\\ntransition systems was $\\\\mathcal{O}(m n)$.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"505 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-18(4:6)2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(4:6)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提供了一种通用算法,用于构造不同转移类型(如不确定性、概率或加权)系统中区分行为不等价状态的公式;在泛协代数范式中,通过对集合函子的协代数进行处理,实现了转换类型上的泛型。对于给定系统中的每一个行为等价类,我们构建了一个公式,该公式精确地包含了该类中的状态。该算法实例化了确定性有限自动机、过渡系统、标记马尔可夫链和许多其他类型的系统。环境逻辑是一种模态逻辑,其特征是从函子中一般提取的模态;这些模态可以在后处理步骤中系统地转换成自定义模态集。新算法建立在现有的共代数划分细化算法的基础上。它在时间$\mathcal{O}((m+n)\log n)$上运行于具有$n$状态和$m$转换的$n$系统,并且同样的易逼近界适用于它构造的公式的日大小。与以前的算法相比,即使对于以前已知的特定实例,即过渡系统和马尔可夫链,这也改善了运行时间和公式大小的界限;特别是,过渡系统的最佳前界为$\mathcal{O}(m n)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasilinear-time Computation of Generic Modal Witnesses for Behavioural Inequivalence
We provide a generic algorithm for constructing formulae that distinguish behaviourally inequivalent states in systems of various transition types such as nondeterministic, probabilistic or weighted; genericity over the transition type is achieved by working with coalgebras for a set functor in the paradigm of universal coalgebra. For every behavioural equivalence class in a given system, we construct a formula which holds precisely at the states in that class. The algorithm instantiates to deterministic finite automata, transition systems, labelled Markov chains, and systems of many other types. The ambient logic is a modal logic featuring modalities that are generically extracted from the functor; these modalities can be systematically translated into custom sets of modalities in a postprocessing step. The new algorithm builds on an existing coalgebraic partition refinement algorithm. It runs in time $\mathcal{O}((m+n) \log n)$ on systems with $n$ states and $m$ transitions, and the same asymptotic bound applies to the dag size of the formulae it constructs. This improves the bounds on run time and formula size compared to previous algorithms even for previously known specific instances, viz. transition systems and Markov chains; in particular, the best previous bound for transition systems was $\mathcal{O}(m n)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信