基于堆叠自编码器的深度神经网络对糖尿病视网膜病变的分类

Yasir Eltigani Ali Mustaf, Bashir Hassan Ismail
{"title":"基于堆叠自编码器的深度神经网络对糖尿病视网膜病变的分类","authors":"Yasir Eltigani Ali Mustaf, Bashir Hassan Ismail","doi":"10.53409/mnaa.jcsit1102","DOIUrl":null,"url":null,"abstract":"Diagnosis of diabetic retinopathy (DR) via images of colour fundus requires experienced clinicians to determine the presence and importance of a large number of small characteristics. This work proposes and named Adapted Stacked Auto Encoder (ASAE-DNN) a novel deep learning framework for diabetic retinopathy (DR), three hidden layers have been used to extract features and classify them then use a Softmax classification. The models proposed are checked on Messidor's data set, including 800 training images and 150 test images. Exactness, accuracy, time, recall and calculation are assessed for the outcomes of the proposed models. The results of these studies show that the model ASAE-DNN was 97% accurate.","PeriodicalId":125707,"journal":{"name":"Journal of Computational Science and Intelligent Technologies","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Classification of Diabetic Retinopathy using Stacked Autoencoder-Based Deep Neural Network\",\"authors\":\"Yasir Eltigani Ali Mustaf, Bashir Hassan Ismail\",\"doi\":\"10.53409/mnaa.jcsit1102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnosis of diabetic retinopathy (DR) via images of colour fundus requires experienced clinicians to determine the presence and importance of a large number of small characteristics. This work proposes and named Adapted Stacked Auto Encoder (ASAE-DNN) a novel deep learning framework for diabetic retinopathy (DR), three hidden layers have been used to extract features and classify them then use a Softmax classification. The models proposed are checked on Messidor's data set, including 800 training images and 150 test images. Exactness, accuracy, time, recall and calculation are assessed for the outcomes of the proposed models. The results of these studies show that the model ASAE-DNN was 97% accurate.\",\"PeriodicalId\":125707,\"journal\":{\"name\":\"Journal of Computational Science and Intelligent Technologies\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science and Intelligent Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53409/mnaa.jcsit1102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Intelligent Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53409/mnaa.jcsit1102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

通过眼底彩色图像诊断糖尿病视网膜病变(DR)需要经验丰富的临床医生来确定大量小特征的存在和重要性。本文提出了一种新的糖尿病视网膜病变(DR)深度学习框架,并将其命名为自适应堆叠自动编码器(ASAE-DNN),使用三个隐藏层提取特征并对其进行分类,然后使用Softmax分类。在Messidor的数据集(包括800张训练图像和150张测试图像)上对所提出的模型进行了检验。对所提出模型的结果进行了准确性、准确性、时间、召回率和计算。这些研究结果表明,ASAE-DNN模型的准确率为97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Diabetic Retinopathy using Stacked Autoencoder-Based Deep Neural Network
Diagnosis of diabetic retinopathy (DR) via images of colour fundus requires experienced clinicians to determine the presence and importance of a large number of small characteristics. This work proposes and named Adapted Stacked Auto Encoder (ASAE-DNN) a novel deep learning framework for diabetic retinopathy (DR), three hidden layers have been used to extract features and classify them then use a Softmax classification. The models proposed are checked on Messidor's data set, including 800 training images and 150 test images. Exactness, accuracy, time, recall and calculation are assessed for the outcomes of the proposed models. The results of these studies show that the model ASAE-DNN was 97% accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信