结合粗糙集理论和Dempster-Shafer理论的分类器设计

A. Das, J. Sil
{"title":"结合粗糙集理论和Dempster-Shafer理论的分类器设计","authors":"A. Das, J. Sil","doi":"10.1504/IJAISC.2010.038643","DOIUrl":null,"url":null,"abstract":"An integrated approach of knowledge discovery has been proposed in the paper using Rough Set Theory (RST) and Dempster-Shafer's (D-S) theory where high dimensional data is reduced in two folds. Firstly, unimportant attributes are eliminated using RST generating minimal subset of attributes, called reducts. Considering each core attribute as root of a decision tree, classification rules are built and grouped based on some similarity measure. Representative of each group constitute the new rule set and thus rules has been reduced while important information are retained. D-S theory ensembles the rules from which a classifier with highest accuracy has been selected.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An efficient classifier design integrating Rough Set and Dempster-Shafer Theory\",\"authors\":\"A. Das, J. Sil\",\"doi\":\"10.1504/IJAISC.2010.038643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An integrated approach of knowledge discovery has been proposed in the paper using Rough Set Theory (RST) and Dempster-Shafer's (D-S) theory where high dimensional data is reduced in two folds. Firstly, unimportant attributes are eliminated using RST generating minimal subset of attributes, called reducts. Considering each core attribute as root of a decision tree, classification rules are built and grouped based on some similarity measure. Representative of each group constitute the new rule set and thus rules has been reduced while important information are retained. D-S theory ensembles the rules from which a classifier with highest accuracy has been selected.\",\"PeriodicalId\":364571,\"journal\":{\"name\":\"Int. J. Artif. Intell. Soft Comput.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Soft Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAISC.2010.038643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2010.038643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用粗糙集理论(RST)和Dempster-Shafer (D-S)理论,提出了一种将高维数据降维为两折的知识发现方法。首先,使用RST生成最小的属性子集(称为约简)来消除不重要的属性。将每个核心属性作为决策树的根,建立分类规则,并根据相似度进行分组。每组的代表组成了新的规则集,因此在保留重要信息的同时减少了规则。D-S理论集成了从这些规则中选择出精度最高的分类器的规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient classifier design integrating Rough Set and Dempster-Shafer Theory
An integrated approach of knowledge discovery has been proposed in the paper using Rough Set Theory (RST) and Dempster-Shafer's (D-S) theory where high dimensional data is reduced in two folds. Firstly, unimportant attributes are eliminated using RST generating minimal subset of attributes, called reducts. Considering each core attribute as root of a decision tree, classification rules are built and grouped based on some similarity measure. Representative of each group constitute the new rule set and thus rules has been reduced while important information are retained. D-S theory ensembles the rules from which a classifier with highest accuracy has been selected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信