{"title":"一种快速概率并行排序算法","authors":"R. Reischuk","doi":"10.1109/SFCS.1981.6","DOIUrl":null,"url":null,"abstract":"We describe a probabilistic parallel algorithm to sort n keys drawn from some arbitrary total ordered set. This algorithm can be implemented on a parallel computer consisting of n RAMs, each with small private memory, and a common memory of size O(n) such that the average runtime is bounded by O(log n). Hence for this algorithm the product of time and number of processors meets the information theoretic lower bound for sorting.","PeriodicalId":224735,"journal":{"name":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"A fast probabilistic parallel sorting algorithm\",\"authors\":\"R. Reischuk\",\"doi\":\"10.1109/SFCS.1981.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a probabilistic parallel algorithm to sort n keys drawn from some arbitrary total ordered set. This algorithm can be implemented on a parallel computer consisting of n RAMs, each with small private memory, and a common memory of size O(n) such that the average runtime is bounded by O(log n). Hence for this algorithm the product of time and number of processors meets the information theoretic lower bound for sorting.\",\"PeriodicalId\":224735,\"journal\":{\"name\":\"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1981.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1981.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We describe a probabilistic parallel algorithm to sort n keys drawn from some arbitrary total ordered set. This algorithm can be implemented on a parallel computer consisting of n RAMs, each with small private memory, and a common memory of size O(n) such that the average runtime is bounded by O(log n). Hence for this algorithm the product of time and number of processors meets the information theoretic lower bound for sorting.