深度q -网络(DQN)方法在智能交通系统中的应用

Vo Thi Thanh Ha, Tran Ngoc Tu, Nguyen Trung Dung, Trinh Luong Mien, Chu Thị Thu Thủy
{"title":"深度q -网络(DQN)方法在智能交通系统中的应用","authors":"Vo Thi Thanh Ha, Tran Ngoc Tu, Nguyen Trung Dung, Trinh Luong Mien, Chu Thị Thu Thủy","doi":"10.1109/ICSSE58758.2023.10227206","DOIUrl":null,"url":null,"abstract":"This paper presents the design of an intelligent controller applying reinforcement learning using a deep Q-network (DQN) algorithm for autonomous vehicles. The deep Q-network (DQN) algorithm is an online, model-free reinforcement learning approach. A DQN agent is a value-based reinforcement learning agent that teaches a critic to predict future rewards or returns. Deep Q-network is to replace the action-state Q table with a neural network. This solution applies to building a self-propelled agent capable of correcting static and moving obstacles according to the physical environment. As a result, the autonomous vehicle can move and avoid collisions with obstacles. The correctness of the theory is demonstrated through MATLAB simulation.","PeriodicalId":280745,"journal":{"name":"2023 International Conference on System Science and Engineering (ICSSE)","volume":"60 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Q-Network (DQN) Approach for Automatic Vehicles Applied in the Intelligent Transportation System (ITS)\",\"authors\":\"Vo Thi Thanh Ha, Tran Ngoc Tu, Nguyen Trung Dung, Trinh Luong Mien, Chu Thị Thu Thủy\",\"doi\":\"10.1109/ICSSE58758.2023.10227206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of an intelligent controller applying reinforcement learning using a deep Q-network (DQN) algorithm for autonomous vehicles. The deep Q-network (DQN) algorithm is an online, model-free reinforcement learning approach. A DQN agent is a value-based reinforcement learning agent that teaches a critic to predict future rewards or returns. Deep Q-network is to replace the action-state Q table with a neural network. This solution applies to building a self-propelled agent capable of correcting static and moving obstacles according to the physical environment. As a result, the autonomous vehicle can move and avoid collisions with obstacles. The correctness of the theory is demonstrated through MATLAB simulation.\",\"PeriodicalId\":280745,\"journal\":{\"name\":\"2023 International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"60 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE58758.2023.10227206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE58758.2023.10227206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于深度q -网络(DQN)算法的强化学习智能控制器的设计。deep Q-network (DQN)算法是一种在线的、无模型的强化学习方法。DQN代理是一种基于价值的强化学习代理,它教会评论家预测未来的奖励或回报。深度Q-network是用神经网络代替动作状态Q表。这个解决方案适用于构建一个能够根据物理环境纠正静态和移动障碍物的自推进代理。因此,自动驾驶汽车可以移动并避免与障碍物碰撞。通过MATLAB仿真验证了理论的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Q-Network (DQN) Approach for Automatic Vehicles Applied in the Intelligent Transportation System (ITS)
This paper presents the design of an intelligent controller applying reinforcement learning using a deep Q-network (DQN) algorithm for autonomous vehicles. The deep Q-network (DQN) algorithm is an online, model-free reinforcement learning approach. A DQN agent is a value-based reinforcement learning agent that teaches a critic to predict future rewards or returns. Deep Q-network is to replace the action-state Q table with a neural network. This solution applies to building a self-propelled agent capable of correcting static and moving obstacles according to the physical environment. As a result, the autonomous vehicle can move and avoid collisions with obstacles. The correctness of the theory is demonstrated through MATLAB simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信