J. Chiou, Lei-Chun Chou, S. Tsai, K. Hou, Chih-Wei Chang
{"title":"微创电极联合TE冷却器对大脑皮层的冷却刺激抑制癫痫","authors":"J. Chiou, Lei-Chun Chou, S. Tsai, K. Hou, Chih-Wei Chang","doi":"10.1109/NEMS.2013.6559945","DOIUrl":null,"url":null,"abstract":"Epilepsy suppression with cooling stimulation is the primary purpose for this study. In this dissertation, cooling stimulation was implemented and demonstrated on cerebral cortex of rats. Electrodes with needle structure was designed and fabricated by using MEMS technology to minimize the size of device. A TE cooler was used to create cooling source and it can be control via electrical current. A cooler component was integrated with an electrode and a TE cooler, in addition, a thermal sensor was also combined with it to detect temperature variation, which was affected by cooling cerebral cortex. The cooler components were implanted on surface of cerebral with deep brain stimulation and the thermal sensors were penetrated into cortex to measure temperature variation which can verify the functions of cooler components. In our experimental results, electrodes with needle structure can improve efficiency of epilepsy suppression due to the particular structure. Duration, frequency and average single time of epileptic waveforms were used to identify to performance of suppression.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"34 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooling stimulation on cerebral cortex for epilepsy suppression with integration of micro-invasive electrodes and TE coolers\",\"authors\":\"J. Chiou, Lei-Chun Chou, S. Tsai, K. Hou, Chih-Wei Chang\",\"doi\":\"10.1109/NEMS.2013.6559945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy suppression with cooling stimulation is the primary purpose for this study. In this dissertation, cooling stimulation was implemented and demonstrated on cerebral cortex of rats. Electrodes with needle structure was designed and fabricated by using MEMS technology to minimize the size of device. A TE cooler was used to create cooling source and it can be control via electrical current. A cooler component was integrated with an electrode and a TE cooler, in addition, a thermal sensor was also combined with it to detect temperature variation, which was affected by cooling cerebral cortex. The cooler components were implanted on surface of cerebral with deep brain stimulation and the thermal sensors were penetrated into cortex to measure temperature variation which can verify the functions of cooler components. In our experimental results, electrodes with needle structure can improve efficiency of epilepsy suppression due to the particular structure. Duration, frequency and average single time of epileptic waveforms were used to identify to performance of suppression.\",\"PeriodicalId\":308928,\"journal\":{\"name\":\"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":\"34 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2013.6559945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cooling stimulation on cerebral cortex for epilepsy suppression with integration of micro-invasive electrodes and TE coolers
Epilepsy suppression with cooling stimulation is the primary purpose for this study. In this dissertation, cooling stimulation was implemented and demonstrated on cerebral cortex of rats. Electrodes with needle structure was designed and fabricated by using MEMS technology to minimize the size of device. A TE cooler was used to create cooling source and it can be control via electrical current. A cooler component was integrated with an electrode and a TE cooler, in addition, a thermal sensor was also combined with it to detect temperature variation, which was affected by cooling cerebral cortex. The cooler components were implanted on surface of cerebral with deep brain stimulation and the thermal sensors were penetrated into cortex to measure temperature variation which can verify the functions of cooler components. In our experimental results, electrodes with needle structure can improve efficiency of epilepsy suppression due to the particular structure. Duration, frequency and average single time of epileptic waveforms were used to identify to performance of suppression.