{"title":"关于丢番图方程15x - 13y = z2","authors":"S. Thongnak, W. Chuayjan, T. Kaewong","doi":"10.22457/apam.v27n1a05896","DOIUrl":null,"url":null,"abstract":"In this article, we prove that the Diophantine equation 15x – 13y = z2 has nonnegative integer solution. The result reveals that the solution (x, y, z) = (0, 0, 0). Keywords: Diophantine equation; factoring method; modular arithmetic method","PeriodicalId":305863,"journal":{"name":"Annals of Pure and Applied Mathematics","volume":"80 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Diophantine Equation 15x – 13y = z2\",\"authors\":\"S. Thongnak, W. Chuayjan, T. Kaewong\",\"doi\":\"10.22457/apam.v27n1a05896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we prove that the Diophantine equation 15x – 13y = z2 has nonnegative integer solution. The result reveals that the solution (x, y, z) = (0, 0, 0). Keywords: Diophantine equation; factoring method; modular arithmetic method\",\"PeriodicalId\":305863,\"journal\":{\"name\":\"Annals of Pure and Applied Mathematics\",\"volume\":\"80 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22457/apam.v27n1a05896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22457/apam.v27n1a05896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文证明了丢芬图方程15x - 13y = z2具有非负整数解。结果表明,解(x, y, z) =(0,0,0)。关键词:丢番汀方程;因式分解方法;模算法
In this article, we prove that the Diophantine equation 15x – 13y = z2 has nonnegative integer solution. The result reveals that the solution (x, y, z) = (0, 0, 0). Keywords: Diophantine equation; factoring method; modular arithmetic method