Hendrik M. Lehmann, Julian Hille, Cyprian Grassmann, V. Issakov
{"title":"具有不应期机制的漏性整合-放电神经元","authors":"Hendrik M. Lehmann, Julian Hille, Cyprian Grassmann, V. Issakov","doi":"10.1109/prime55000.2022.9816777","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNNs) are a widespread research topic, as they are a promising solution for efficient and low-energy signal processing. The advantage in energy consumption of SNN algorithms pre-developed in software is obtained by their transfer to neural application-specific integrated circuits (ASICs). The neurons and synapses that are used on algorithm level have to be mapped by special circuits on the hardware level. One of the most widely used neuron models due to its low computational complexity and high biological inspiration is the leaky integrate-and-fire (LIF) neuron. In this paper, a modification of an energy-efficient LIF neuron is presented with a novel method to use a refractory period (RP) to generate invariant output spikes. By modifying the RP mechanism, the controllability and stability of entire SNN systems on the circuit level can be significantly improved. Due to the low energy of 1.4 pJ / spike and the invariance of these, it becomes easier to predict the total energy consumption of a large-scale SNN. The concept is verified in measurement by fabricating the circuit in a 130 nm BiCMOS process.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"78 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Leaky Integrate-and-Fire Neuron with a Refractory Period Mechanism for Invariant Spikes\",\"authors\":\"Hendrik M. Lehmann, Julian Hille, Cyprian Grassmann, V. Issakov\",\"doi\":\"10.1109/prime55000.2022.9816777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks (SNNs) are a widespread research topic, as they are a promising solution for efficient and low-energy signal processing. The advantage in energy consumption of SNN algorithms pre-developed in software is obtained by their transfer to neural application-specific integrated circuits (ASICs). The neurons and synapses that are used on algorithm level have to be mapped by special circuits on the hardware level. One of the most widely used neuron models due to its low computational complexity and high biological inspiration is the leaky integrate-and-fire (LIF) neuron. In this paper, a modification of an energy-efficient LIF neuron is presented with a novel method to use a refractory period (RP) to generate invariant output spikes. By modifying the RP mechanism, the controllability and stability of entire SNN systems on the circuit level can be significantly improved. Due to the low energy of 1.4 pJ / spike and the invariance of these, it becomes easier to predict the total energy consumption of a large-scale SNN. The concept is verified in measurement by fabricating the circuit in a 130 nm BiCMOS process.\",\"PeriodicalId\":142196,\"journal\":{\"name\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"78 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prime55000.2022.9816777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leaky Integrate-and-Fire Neuron with a Refractory Period Mechanism for Invariant Spikes
Spiking neural networks (SNNs) are a widespread research topic, as they are a promising solution for efficient and low-energy signal processing. The advantage in energy consumption of SNN algorithms pre-developed in software is obtained by their transfer to neural application-specific integrated circuits (ASICs). The neurons and synapses that are used on algorithm level have to be mapped by special circuits on the hardware level. One of the most widely used neuron models due to its low computational complexity and high biological inspiration is the leaky integrate-and-fire (LIF) neuron. In this paper, a modification of an energy-efficient LIF neuron is presented with a novel method to use a refractory period (RP) to generate invariant output spikes. By modifying the RP mechanism, the controllability and stability of entire SNN systems on the circuit level can be significantly improved. Due to the low energy of 1.4 pJ / spike and the invariance of these, it becomes easier to predict the total energy consumption of a large-scale SNN. The concept is verified in measurement by fabricating the circuit in a 130 nm BiCMOS process.