一种快速计算正区域的改进算法

Jieping Ye, X. Tian
{"title":"一种快速计算正区域的改进算法","authors":"Jieping Ye, X. Tian","doi":"10.1109/GrC.2012.6468588","DOIUrl":null,"url":null,"abstract":"Positive region is the one of the core concepts in rough set theory, which algorithm complexity of region directly affects other algorithms. With a equivalent definition of area, this paper proposes a calculation method based on the diagonal matrix. This method stores the compatible object set searched every time in the diagonal of diagonal matrix, and the object searched has to be zero processed, thereby the method reduces the amount of computation. Examples show that the method convenient, simple and intuitive, and can improve the of computing positive region.","PeriodicalId":126161,"journal":{"name":"IEEE International Conference on Granular Computing","volume":"51 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An updated algorithm for fast computing positive region\",\"authors\":\"Jieping Ye, X. Tian\",\"doi\":\"10.1109/GrC.2012.6468588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positive region is the one of the core concepts in rough set theory, which algorithm complexity of region directly affects other algorithms. With a equivalent definition of area, this paper proposes a calculation method based on the diagonal matrix. This method stores the compatible object set searched every time in the diagonal of diagonal matrix, and the object searched has to be zero processed, thereby the method reduces the amount of computation. Examples show that the method convenient, simple and intuitive, and can improve the of computing positive region.\",\"PeriodicalId\":126161,\"journal\":{\"name\":\"IEEE International Conference on Granular Computing\",\"volume\":\"51 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Granular Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GrC.2012.6468588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GrC.2012.6468588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正区域是粗糙集理论中的核心概念之一,其算法复杂度直接影响到其他算法。根据面积的等效定义,提出了一种基于对角矩阵的计算方法。该方法将每次搜索到的兼容对象集存储在对角矩阵的对角线中,对搜索到的对象进行零处理,从而减少了计算量。算例表明,该方法方便、简单、直观,能提高正区域的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An updated algorithm for fast computing positive region
Positive region is the one of the core concepts in rough set theory, which algorithm complexity of region directly affects other algorithms. With a equivalent definition of area, this paper proposes a calculation method based on the diagonal matrix. This method stores the compatible object set searched every time in the diagonal of diagonal matrix, and the object searched has to be zero processed, thereby the method reduces the amount of computation. Examples show that the method convenient, simple and intuitive, and can improve the of computing positive region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信