连续流微流控装置中多个血细胞不可逆电穿孔的理论研究

Ismail Hussain Kamal Basha, N. H. Hamid, C. M. Yousuff, Eric Tatt Wei Ho
{"title":"连续流微流控装置中多个血细胞不可逆电穿孔的理论研究","authors":"Ismail Hussain Kamal Basha, N. H. Hamid, C. M. Yousuff, Eric Tatt Wei Ho","doi":"10.1109/ICIAS.2016.7824100","DOIUrl":null,"url":null,"abstract":"In this paper, we present a theoretical study on irreversible electroporation of multiple blood cells in a continuous flow microfluidic device for high throughput applications. Irreversible electroporation is the cell lysis process in which the application of electric field permanently permeabilizes the cell membrane, allowing the intercellular content to eject out for downstream genetic analysis. The device geometry can be manipulated for fluid transport and irreversible electroporation. Our study concentrates on the effect of voltage, flow velocity, geometry and the location of cells inside the device for efficient irreversible electroporation. Our results show that by controlling the applied voltage, cells can be irreversibly electroporated. The flow velocity influences irreversible electroporation. If the flow velocity is greater than the resident velocity of the cell, the pores on the membrane will reseal thereby resulting in reversible electroporation. The nanofluidic channels increase the duration of electroporation as the larger cells cannot pass through them.","PeriodicalId":247287,"journal":{"name":"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"8 3-4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irreversible electroporation of multiple blood cells in continuous flow microfluidic device — A theoretical study\",\"authors\":\"Ismail Hussain Kamal Basha, N. H. Hamid, C. M. Yousuff, Eric Tatt Wei Ho\",\"doi\":\"10.1109/ICIAS.2016.7824100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a theoretical study on irreversible electroporation of multiple blood cells in a continuous flow microfluidic device for high throughput applications. Irreversible electroporation is the cell lysis process in which the application of electric field permanently permeabilizes the cell membrane, allowing the intercellular content to eject out for downstream genetic analysis. The device geometry can be manipulated for fluid transport and irreversible electroporation. Our study concentrates on the effect of voltage, flow velocity, geometry and the location of cells inside the device for efficient irreversible electroporation. Our results show that by controlling the applied voltage, cells can be irreversibly electroporated. The flow velocity influences irreversible electroporation. If the flow velocity is greater than the resident velocity of the cell, the pores on the membrane will reseal thereby resulting in reversible electroporation. The nanofluidic channels increase the duration of electroporation as the larger cells cannot pass through them.\",\"PeriodicalId\":247287,\"journal\":{\"name\":\"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"volume\":\"8 3-4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAS.2016.7824100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS.2016.7824100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对高通量连续流微流控装置中多个血细胞的不可逆电穿孔进行了理论研究。不可逆电穿孔是一种细胞裂解过程,在这种过程中,电场的作用使细胞膜永久渗透,使细胞间的内容物喷射出来,用于下游的遗传分析。该装置的几何形状可以操纵流体传输和不可逆电穿孔。我们的研究集中在电压、流速、几何形状和细胞在装置内的位置对高效不可逆电穿孔的影响。我们的研究结果表明,通过控制施加的电压,细胞可以不可逆地电穿孔。流速影响不可逆电穿孔。如果流速大于细胞的停留速度,膜上的孔隙将重新密封,从而导致可逆的电穿孔。纳米流体通道增加了电穿孔的持续时间,因为较大的细胞不能通过它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irreversible electroporation of multiple blood cells in continuous flow microfluidic device — A theoretical study
In this paper, we present a theoretical study on irreversible electroporation of multiple blood cells in a continuous flow microfluidic device for high throughput applications. Irreversible electroporation is the cell lysis process in which the application of electric field permanently permeabilizes the cell membrane, allowing the intercellular content to eject out for downstream genetic analysis. The device geometry can be manipulated for fluid transport and irreversible electroporation. Our study concentrates on the effect of voltage, flow velocity, geometry and the location of cells inside the device for efficient irreversible electroporation. Our results show that by controlling the applied voltage, cells can be irreversibly electroporated. The flow velocity influences irreversible electroporation. If the flow velocity is greater than the resident velocity of the cell, the pores on the membrane will reseal thereby resulting in reversible electroporation. The nanofluidic channels increase the duration of electroporation as the larger cells cannot pass through them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信