利用量子退火平衡k均值

A. Zaiou, Younès Bennani, Basarab Matei, M. Hibti
{"title":"利用量子退火平衡k均值","authors":"A. Zaiou, Younès Bennani, Basarab Matei, M. Hibti","doi":"10.1109/SSCI50451.2021.9659997","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new quantum version of the Balanced K-means algorithm in the D-wave quantum annealer. D-wave 2000Q quantum computer has been used by many papers in the last few years to solve optimization problems and for finding the global minimum of the balanced K-means optimization problem. However, in this paper, we modify the quadratic unconstrained binary optimization (QUBO) formulation of the Balanced K-means that has been proposed in a recent paper. Our modification is trained on different data sets: Iris, Wine and Breast Cancer. Also, we performed a comparative analysis between the two approaches (our approach and the paper's approach) to find the one that assigns the largest number of data to clusters and we also use the Davies-Bouldi metric to prove that our method gives the best clustering.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"18 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Balanced K-means using Quantum annealing\",\"authors\":\"A. Zaiou, Younès Bennani, Basarab Matei, M. Hibti\",\"doi\":\"10.1109/SSCI50451.2021.9659997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new quantum version of the Balanced K-means algorithm in the D-wave quantum annealer. D-wave 2000Q quantum computer has been used by many papers in the last few years to solve optimization problems and for finding the global minimum of the balanced K-means optimization problem. However, in this paper, we modify the quadratic unconstrained binary optimization (QUBO) formulation of the Balanced K-means that has been proposed in a recent paper. Our modification is trained on different data sets: Iris, Wine and Breast Cancer. Also, we performed a comparative analysis between the two approaches (our approach and the paper's approach) to find the one that assigns the largest number of data to clusters and we also use the Davies-Bouldi metric to prove that our method gives the best clustering.\",\"PeriodicalId\":255763,\"journal\":{\"name\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"18 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI50451.2021.9659997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9659997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种新的量子版本的平衡k -均值算法在d波量子退火。D-wave 2000Q量子计算机在过去几年中被许多论文用于解决优化问题和寻找平衡K-means优化问题的全局最小值。然而,在本文中,我们修改了在最近的一篇论文中提出的平衡K-means的二次无约束二元优化(QUBO)公式。我们的修改是在不同的数据集上进行训练的:虹膜、葡萄酒和乳腺癌。此外,我们对两种方法(我们的方法和论文的方法)进行了比较分析,以找到将最大数量的数据分配给聚类的方法,我们还使用Davies-Bouldi度量来证明我们的方法给出了最好的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balanced K-means using Quantum annealing
In this paper, we propose a new quantum version of the Balanced K-means algorithm in the D-wave quantum annealer. D-wave 2000Q quantum computer has been used by many papers in the last few years to solve optimization problems and for finding the global minimum of the balanced K-means optimization problem. However, in this paper, we modify the quadratic unconstrained binary optimization (QUBO) formulation of the Balanced K-means that has been proposed in a recent paper. Our modification is trained on different data sets: Iris, Wine and Breast Cancer. Also, we performed a comparative analysis between the two approaches (our approach and the paper's approach) to find the one that assigns the largest number of data to clusters and we also use the Davies-Bouldi metric to prove that our method gives the best clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信