基于流存储器的可重构逻辑的新皮层模型实现

Christopher N. Vutsinas, T. Taha, Kenneth L. Rice
{"title":"基于流存储器的可重构逻辑的新皮层模型实现","authors":"Christopher N. Vutsinas, T. Taha, Kenneth L. Rice","doi":"10.1109/IPDPS.2008.4536533","DOIUrl":null,"url":null,"abstract":"In this paper we study the acceleration of a new class of cognitive processing applications based on the structure of the neocortex. Our focus is on a model of the visual cortex used for image recognition developed by George and Hawkins. We propose techniques to accelerate the algorithm using reconfigurable logic, specifically a streaming memory architecture utilizing available off-chip memory. We discuss the design of a streaming memory access unit enabling a large number of processing elements to be placed on a single FPGA thus increasing throughput. We present an implementation of our approach on a Cray XD1 and discuss possible extension to further increase throughput. Our results indicate that using a two FPGA design with streaming memory gives a speedup of 71.9 times over a purely software implementation.","PeriodicalId":162608,"journal":{"name":"2008 IEEE International Symposium on Parallel and Distributed Processing","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A neocortex model implementation on reconfigurable logic with streaming memory\",\"authors\":\"Christopher N. Vutsinas, T. Taha, Kenneth L. Rice\",\"doi\":\"10.1109/IPDPS.2008.4536533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the acceleration of a new class of cognitive processing applications based on the structure of the neocortex. Our focus is on a model of the visual cortex used for image recognition developed by George and Hawkins. We propose techniques to accelerate the algorithm using reconfigurable logic, specifically a streaming memory architecture utilizing available off-chip memory. We discuss the design of a streaming memory access unit enabling a large number of processing elements to be placed on a single FPGA thus increasing throughput. We present an implementation of our approach on a Cray XD1 and discuss possible extension to further increase throughput. Our results indicate that using a two FPGA design with streaming memory gives a speedup of 71.9 times over a purely software implementation.\",\"PeriodicalId\":162608,\"journal\":{\"name\":\"2008 IEEE International Symposium on Parallel and Distributed Processing\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Parallel and Distributed Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2008.4536533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2008.4536533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们研究了基于新皮层结构的一类新的认知加工应用的加速。我们的重点是乔治和霍金斯开发的用于图像识别的视觉皮层模型。我们提出了使用可重构逻辑加速算法的技术,特别是利用可用的片外存储器的流存储器架构。我们讨论了一种流存储器访问单元的设计,使大量的处理元件可以放在单个FPGA上,从而提高吞吐量。我们在Cray XD1上展示了我们的方法的实现,并讨论了进一步提高吞吐量的可能扩展。我们的结果表明,使用带有流存储器的两个FPGA设计比纯软件实现的速度提高了71.9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neocortex model implementation on reconfigurable logic with streaming memory
In this paper we study the acceleration of a new class of cognitive processing applications based on the structure of the neocortex. Our focus is on a model of the visual cortex used for image recognition developed by George and Hawkins. We propose techniques to accelerate the algorithm using reconfigurable logic, specifically a streaming memory architecture utilizing available off-chip memory. We discuss the design of a streaming memory access unit enabling a large number of processing elements to be placed on a single FPGA thus increasing throughput. We present an implementation of our approach on a Cray XD1 and discuss possible extension to further increase throughput. Our results indicate that using a two FPGA design with streaming memory gives a speedup of 71.9 times over a purely software implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信