一种估计RBF-SVM泛化性能的算法

Dong Chun-xi, Yang Shao-quan, Rao Xian, Tang Jian-long
{"title":"一种估计RBF-SVM泛化性能的算法","authors":"Dong Chun-xi, Yang Shao-quan, Rao Xian, Tang Jian-long","doi":"10.1109/ICCIMA.2003.1238101","DOIUrl":null,"url":null,"abstract":"Using the sparseness of a support vector machine (SVM) solution, properties of radial basis function (RBF) kernel and the inter-median parameters in training the SVM, an algorithm to estimate the generalization performance of RBF-SVM is presented. Without additional complex computing, it overcomes many disadvantages of existing algorithm such as longer computation time and narrower application range. It is proved to be a general method for estimating the generalization performance of a RBF-SVM theoretically and experimentally and can be applied in wide range problems of pattern recognition using SVM.","PeriodicalId":385362,"journal":{"name":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","volume":"21 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An algorithm of estimating the generalization performance of RBF-SVM\",\"authors\":\"Dong Chun-xi, Yang Shao-quan, Rao Xian, Tang Jian-long\",\"doi\":\"10.1109/ICCIMA.2003.1238101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the sparseness of a support vector machine (SVM) solution, properties of radial basis function (RBF) kernel and the inter-median parameters in training the SVM, an algorithm to estimate the generalization performance of RBF-SVM is presented. Without additional complex computing, it overcomes many disadvantages of existing algorithm such as longer computation time and narrower application range. It is proved to be a general method for estimating the generalization performance of a RBF-SVM theoretically and experimentally and can be applied in wide range problems of pattern recognition using SVM.\",\"PeriodicalId\":385362,\"journal\":{\"name\":\"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003\",\"volume\":\"21 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIMA.2003.1238101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.2003.1238101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

利用支持向量机(SVM)解的稀疏性、径向基函数(RBF)核的性质和训练支持向量机的中值参数,提出了一种估计支持向量机-支持向量机泛化性能的算法。它不需要额外的复杂计算,克服了现有算法计算时间长、适用范围窄等缺点。理论和实验证明,它是估计RBF-SVM泛化性能的一种通用方法,可以应用于支持向量机模式识别的广泛问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algorithm of estimating the generalization performance of RBF-SVM
Using the sparseness of a support vector machine (SVM) solution, properties of radial basis function (RBF) kernel and the inter-median parameters in training the SVM, an algorithm to estimate the generalization performance of RBF-SVM is presented. Without additional complex computing, it overcomes many disadvantages of existing algorithm such as longer computation time and narrower application range. It is proved to be a general method for estimating the generalization performance of a RBF-SVM theoretically and experimentally and can be applied in wide range problems of pattern recognition using SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信