基于注意模型的深度局部人再识别

Junyeong Kim, C. Yoo
{"title":"基于注意模型的深度局部人再识别","authors":"Junyeong Kim, C. Yoo","doi":"10.1109/ICIP.2017.8296918","DOIUrl":null,"url":null,"abstract":"This paper considers a novel algorithm referred to as deep partial person re-identification (DPPR) for partial person re-identification where only a part of a person is observed and full body images are available for identification. The DPPR is based on an end-to-end deep model which make use of convolutional neural network (CNN), RoI Pooling layer and attention model. The RoI Pooling layer enables the extraction of feature vector corresponding to predefined part of input image. The attention model selects a subset of CNN feature vectors. For qualitative evaluation of proposed model, data from CUHK03 are randomly cropped in constructing p-CUHK03. Experimental results show that DPPR outperforms our baseline model on p-CUHK03.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"55 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Deep partial person re-identification via attention model\",\"authors\":\"Junyeong Kim, C. Yoo\",\"doi\":\"10.1109/ICIP.2017.8296918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a novel algorithm referred to as deep partial person re-identification (DPPR) for partial person re-identification where only a part of a person is observed and full body images are available for identification. The DPPR is based on an end-to-end deep model which make use of convolutional neural network (CNN), RoI Pooling layer and attention model. The RoI Pooling layer enables the extraction of feature vector corresponding to predefined part of input image. The attention model selects a subset of CNN feature vectors. For qualitative evaluation of proposed model, data from CUHK03 are randomly cropped in constructing p-CUHK03. Experimental results show that DPPR outperforms our baseline model on p-CUHK03.\",\"PeriodicalId\":229602,\"journal\":{\"name\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"55 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2017.8296918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文考虑了一种新的局部人再识别算法,即深度部分人再识别(DPPR),用于仅观察人的一部分并且可以使用全身图像进行识别。DPPR基于端到端的深度模型,该模型利用了卷积神经网络(CNN)、RoI Pooling层和注意力模型。RoI Pooling层用于提取输入图像中预定义部分对应的特征向量。注意模型选择CNN特征向量的一个子集。为了对所提出的模型进行定性评价,在构建p-CUHK03时随机截取了中大03的数据。实验结果表明,DPPR在p-CUHK03上优于我们的基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep partial person re-identification via attention model
This paper considers a novel algorithm referred to as deep partial person re-identification (DPPR) for partial person re-identification where only a part of a person is observed and full body images are available for identification. The DPPR is based on an end-to-end deep model which make use of convolutional neural network (CNN), RoI Pooling layer and attention model. The RoI Pooling layer enables the extraction of feature vector corresponding to predefined part of input image. The attention model selects a subset of CNN feature vectors. For qualitative evaluation of proposed model, data from CUHK03 are randomly cropped in constructing p-CUHK03. Experimental results show that DPPR outperforms our baseline model on p-CUHK03.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信