Geoffrey Taylor, Ping Wang, Z. Rasheed, N. Haering
{"title":"用于智能相机应用的快速判别检测","authors":"Geoffrey Taylor, Ping Wang, Z. Rasheed, N. Haering","doi":"10.1109/ICDSC.2011.6042912","DOIUrl":null,"url":null,"abstract":"Tracking-by-detection is an attractive paradigm for intelligent visual surveillance applications where clutter, lighting variations, target overlap and occlusions hamper conventional background modeling. However, state-of-the-art vehicle and pedestrian detectors based on discriminative classification are too computationally expensive for real-time implementation on embedded smart cameras. This paper presents the Generative Focus of Attention-Discriminative Validation (GFA-DV) detector which uses generative target detection to greatly improve the efficiency of discriminative classification. The proposed method gains further efficiency by using a hierarchical visual codebook to enable each stage of the detector to efficiently utilize the same features within a different quantization of the feature space. This approach reduces the expense of feature matching compared to multiple flat codebooks. The proposed GFA-DV detector is experimentally compared to several state-of-the-art methods, and shown to perform better than other efficient detectors while achieving a 100 times speedup over more accurate detectors.","PeriodicalId":385052,"journal":{"name":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","volume":"25 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid discriminative detection for smart camera applications\",\"authors\":\"Geoffrey Taylor, Ping Wang, Z. Rasheed, N. Haering\",\"doi\":\"10.1109/ICDSC.2011.6042912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking-by-detection is an attractive paradigm for intelligent visual surveillance applications where clutter, lighting variations, target overlap and occlusions hamper conventional background modeling. However, state-of-the-art vehicle and pedestrian detectors based on discriminative classification are too computationally expensive for real-time implementation on embedded smart cameras. This paper presents the Generative Focus of Attention-Discriminative Validation (GFA-DV) detector which uses generative target detection to greatly improve the efficiency of discriminative classification. The proposed method gains further efficiency by using a hierarchical visual codebook to enable each stage of the detector to efficiently utilize the same features within a different quantization of the feature space. This approach reduces the expense of feature matching compared to multiple flat codebooks. The proposed GFA-DV detector is experimentally compared to several state-of-the-art methods, and shown to perform better than other efficient detectors while achieving a 100 times speedup over more accurate detectors.\",\"PeriodicalId\":385052,\"journal\":{\"name\":\"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras\",\"volume\":\"25 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSC.2011.6042912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSC.2011.6042912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid discriminative detection for smart camera applications
Tracking-by-detection is an attractive paradigm for intelligent visual surveillance applications where clutter, lighting variations, target overlap and occlusions hamper conventional background modeling. However, state-of-the-art vehicle and pedestrian detectors based on discriminative classification are too computationally expensive for real-time implementation on embedded smart cameras. This paper presents the Generative Focus of Attention-Discriminative Validation (GFA-DV) detector which uses generative target detection to greatly improve the efficiency of discriminative classification. The proposed method gains further efficiency by using a hierarchical visual codebook to enable each stage of the detector to efficiently utilize the same features within a different quantization of the feature space. This approach reduces the expense of feature matching compared to multiple flat codebooks. The proposed GFA-DV detector is experimentally compared to several state-of-the-art methods, and shown to perform better than other efficient detectors while achieving a 100 times speedup over more accurate detectors.