基于区域树的立体视觉动态规划优化

C. Lei, Jason M. Selzer, Herbert Yang
{"title":"基于区域树的立体视觉动态规划优化","authors":"C. Lei, Jason M. Selzer, Herbert Yang","doi":"10.1109/CVPR.2006.251","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel stereo algorithm that combines the strengths of region-based stereo and dynamic programming on a tree approaches. Instead of formulating an image as individual scan-lines or as a pixel tree, a new region tree structure, which is built as a minimum spanning tree on the adjacency-graph of an over-segmented image, is used for the global dynamic programming optimization. The resulting disparity maps do not contain any streaking problem as is common in scanline-based algorithms because of the tree structure. The performance evaluation using the Middlebury benchmark datasets shows that the performance of our algorithm is comparable in accuracy and efficiency with top ranking algorithms.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":"{\"title\":\"Region-Tree Based Stereo Using Dynamic Programming Optimization\",\"authors\":\"C. Lei, Jason M. Selzer, Herbert Yang\",\"doi\":\"10.1109/CVPR.2006.251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel stereo algorithm that combines the strengths of region-based stereo and dynamic programming on a tree approaches. Instead of formulating an image as individual scan-lines or as a pixel tree, a new region tree structure, which is built as a minimum spanning tree on the adjacency-graph of an over-segmented image, is used for the global dynamic programming optimization. The resulting disparity maps do not contain any streaking problem as is common in scanline-based algorithms because of the tree structure. The performance evaluation using the Middlebury benchmark datasets shows that the performance of our algorithm is comparable in accuracy and efficiency with top ranking algorithms.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"140\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140

摘要

在本文中,我们提出了一种新的立体算法,它结合了基于区域的立体和基于树的动态规划方法的优点。采用一种新的区域树结构,在过分割图像的邻接图上建立最小生成树,而不是将图像表述为单个扫描线或像素树,用于全局动态规划优化。由于树形结构,所产生的视差图不包含任何条纹问题,这在基于扫描线的算法中很常见。使用Middlebury基准数据集进行的性能评估表明,我们的算法在精度和效率方面与排名靠前的算法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region-Tree Based Stereo Using Dynamic Programming Optimization
In this paper, we present a novel stereo algorithm that combines the strengths of region-based stereo and dynamic programming on a tree approaches. Instead of formulating an image as individual scan-lines or as a pixel tree, a new region tree structure, which is built as a minimum spanning tree on the adjacency-graph of an over-segmented image, is used for the global dynamic programming optimization. The resulting disparity maps do not contain any streaking problem as is common in scanline-based algorithms because of the tree structure. The performance evaluation using the Middlebury benchmark datasets shows that the performance of our algorithm is comparable in accuracy and efficiency with top ranking algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信