太赫兹应用中亚波长波导结构的设计

Vikas Singal, S. Smaili, Y. Massoud
{"title":"太赫兹应用中亚波长波导结构的设计","authors":"Vikas Singal, S. Smaili, Y. Massoud","doi":"10.1109/NEMS.2012.6196827","DOIUrl":null,"url":null,"abstract":"Closing the THz gap would lead to a tremendous of advancement in a wide range of applications such as biomedical imaging, security, and material inspection. The gap refers to the lack of devices for the manipulation of THz radiation as compared to its microwave and optical counterparts. Plasmonic devices based on semiconductors rather than metals allow the realization of efficient and small scale THz devices by utilizing the unique properties of plasmon oscillations. In this paper, we investigate the performance of an InSb-SiO2-InSb structure for THz waveguiding. We study the propagation length and the skin depth of the symmetric and antisymmetric transverse magnetic modes of these waveguides. We use numerical techniques to solve for the dispersion relation and derive the propagation length and the skin depth as a function of frequency.","PeriodicalId":156839,"journal":{"name":"2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"22 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the design of subwavelength waveguiding structures for terahertz Applications\",\"authors\":\"Vikas Singal, S. Smaili, Y. Massoud\",\"doi\":\"10.1109/NEMS.2012.6196827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Closing the THz gap would lead to a tremendous of advancement in a wide range of applications such as biomedical imaging, security, and material inspection. The gap refers to the lack of devices for the manipulation of THz radiation as compared to its microwave and optical counterparts. Plasmonic devices based on semiconductors rather than metals allow the realization of efficient and small scale THz devices by utilizing the unique properties of plasmon oscillations. In this paper, we investigate the performance of an InSb-SiO2-InSb structure for THz waveguiding. We study the propagation length and the skin depth of the symmetric and antisymmetric transverse magnetic modes of these waveguides. We use numerical techniques to solve for the dispersion relation and derive the propagation length and the skin depth as a function of frequency.\",\"PeriodicalId\":156839,\"journal\":{\"name\":\"2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"22 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2012.6196827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2012.6196827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

缩小太赫兹差距将导致在生物医学成像、安全和材料检查等广泛应用领域取得巨大进步。差距是指与微波和光学设备相比,缺乏操纵太赫兹辐射的设备。利用等离子体振荡的独特特性,基于半导体而不是金属的等离子体器件可以实现高效和小规模的太赫兹器件。在本文中,我们研究了InSb-SiO2-InSb结构用于太赫兹波导的性能。我们研究了这些波导的对称和反对称横向磁模的传播长度和趋肤深度。我们用数值方法求解频散关系,并推导出传播长度和趋肤深度作为频率的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the design of subwavelength waveguiding structures for terahertz Applications
Closing the THz gap would lead to a tremendous of advancement in a wide range of applications such as biomedical imaging, security, and material inspection. The gap refers to the lack of devices for the manipulation of THz radiation as compared to its microwave and optical counterparts. Plasmonic devices based on semiconductors rather than metals allow the realization of efficient and small scale THz devices by utilizing the unique properties of plasmon oscillations. In this paper, we investigate the performance of an InSb-SiO2-InSb structure for THz waveguiding. We study the propagation length and the skin depth of the symmetric and antisymmetric transverse magnetic modes of these waveguides. We use numerical techniques to solve for the dispersion relation and derive the propagation length and the skin depth as a function of frequency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信