冻土上浅层冻土带的生物通风

D. White, R. Irvine
{"title":"冻土上浅层冻土带的生物通风","authors":"D. White, R. Irvine","doi":"10.1080/10588339891334474","DOIUrl":null,"url":null,"abstract":"The purpose of this research was to investigate the feasibility of suction bioventing for treatment of contaminated tundra soil. Two laboratory-scale venting reactors were prepared with tundra from Arctic Alaska and operated, one for 32 d and the other for 52 d. For each rectangular reactor, suction was applied to a central well screened at mid-depth, while opposite ends of the reactor were screened to serve as air intake zones. The volume of liquid and gas recovered from the suction well was quantified daily. Numbers for heterotrophic organisms, pH, and dissolved organic carbon were quantified in the recovered liquid. The suction pump held a full vacuum (i.e., 101 kPa vac) for the duration of both experiments, indicating continuous obstruction of pneumatic and hydraulic conductivity. In both reactors, the soil in the proximity of the suction well separated from the bulk of the soil, precluding hydraulic communication. Furthermore, the soil nearest the well screen compacted, forming a barrier to appreciab...","PeriodicalId":433778,"journal":{"name":"Journal of Soil Contamination","volume":"15 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bioventing in Shallow Tundra Overlying Permafrost\",\"authors\":\"D. White, R. Irvine\",\"doi\":\"10.1080/10588339891334474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this research was to investigate the feasibility of suction bioventing for treatment of contaminated tundra soil. Two laboratory-scale venting reactors were prepared with tundra from Arctic Alaska and operated, one for 32 d and the other for 52 d. For each rectangular reactor, suction was applied to a central well screened at mid-depth, while opposite ends of the reactor were screened to serve as air intake zones. The volume of liquid and gas recovered from the suction well was quantified daily. Numbers for heterotrophic organisms, pH, and dissolved organic carbon were quantified in the recovered liquid. The suction pump held a full vacuum (i.e., 101 kPa vac) for the duration of both experiments, indicating continuous obstruction of pneumatic and hydraulic conductivity. In both reactors, the soil in the proximity of the suction well separated from the bulk of the soil, precluding hydraulic communication. Furthermore, the soil nearest the well screen compacted, forming a barrier to appreciab...\",\"PeriodicalId\":433778,\"journal\":{\"name\":\"Journal of Soil Contamination\",\"volume\":\"15 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil Contamination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10588339891334474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Contamination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10588339891334474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是探讨吸式生物通气处理冻土带污染土壤的可行性。用阿拉斯加北极地区的冻土带制备了两个实验室规模的通风反应器,一个运行32 d,另一个运行52 d。对于每个矩形反应器,将吸力施加于中间深度屏蔽的中央井,而反应器的两端被屏蔽作为进气区。每天定量从抽吸井中回收的液体和气体的体积。对回收液中异养生物、pH和溶解有机碳的数量进行了量化。在两个实验期间,吸入泵保持全真空(即101 kPa vac),表明气动和水力传导持续受阻。在两个反应器中,靠近吸力井的土壤与大部分土壤分离,阻止了水力通信。此外,离筛管最近的土壤被压实,形成了一个屏障,阻挡了采油。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioventing in Shallow Tundra Overlying Permafrost
The purpose of this research was to investigate the feasibility of suction bioventing for treatment of contaminated tundra soil. Two laboratory-scale venting reactors were prepared with tundra from Arctic Alaska and operated, one for 32 d and the other for 52 d. For each rectangular reactor, suction was applied to a central well screened at mid-depth, while opposite ends of the reactor were screened to serve as air intake zones. The volume of liquid and gas recovered from the suction well was quantified daily. Numbers for heterotrophic organisms, pH, and dissolved organic carbon were quantified in the recovered liquid. The suction pump held a full vacuum (i.e., 101 kPa vac) for the duration of both experiments, indicating continuous obstruction of pneumatic and hydraulic conductivity. In both reactors, the soil in the proximity of the suction well separated from the bulk of the soil, precluding hydraulic communication. Furthermore, the soil nearest the well screen compacted, forming a barrier to appreciab...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信