{"title":"正交初始化求解深度神经网络梯度不稳定性的生物合理性研究","authors":"Nikolay Manchev, Michael W. Spratling","doi":"10.1109/ISCMI56532.2022.10068489","DOIUrl":null,"url":null,"abstract":"Initialising the synaptic weights of artificial neural networks (ANNs) with orthogonal matrices is known to alleviate vanishing and exploding gradient problems. A major objection against such initialisation schemes is that they are deemed biologically implausible as they mandate factorization techniques that are difficult to attribute to a neurobiological process. This paper presents two initialisation schemes that allow a network to naturally evolve its weights to form orthogonal matrices, provides theoretical analysis that pre-training orthogonalisation always converges, and empirically confirms that the proposed schemes outperform randomly initialised recurrent and feedforward networks.","PeriodicalId":340397,"journal":{"name":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"32 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Biological Plausibility of Orthogonal Initialisation for Solving Gradient Instability in Deep Neural Networks\",\"authors\":\"Nikolay Manchev, Michael W. Spratling\",\"doi\":\"10.1109/ISCMI56532.2022.10068489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Initialising the synaptic weights of artificial neural networks (ANNs) with orthogonal matrices is known to alleviate vanishing and exploding gradient problems. A major objection against such initialisation schemes is that they are deemed biologically implausible as they mandate factorization techniques that are difficult to attribute to a neurobiological process. This paper presents two initialisation schemes that allow a network to naturally evolve its weights to form orthogonal matrices, provides theoretical analysis that pre-training orthogonalisation always converges, and empirically confirms that the proposed schemes outperform randomly initialised recurrent and feedforward networks.\",\"PeriodicalId\":340397,\"journal\":{\"name\":\"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"volume\":\"32 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCMI56532.2022.10068489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI56532.2022.10068489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Biological Plausibility of Orthogonal Initialisation for Solving Gradient Instability in Deep Neural Networks
Initialising the synaptic weights of artificial neural networks (ANNs) with orthogonal matrices is known to alleviate vanishing and exploding gradient problems. A major objection against such initialisation schemes is that they are deemed biologically implausible as they mandate factorization techniques that are difficult to attribute to a neurobiological process. This paper presents two initialisation schemes that allow a network to naturally evolve its weights to form orthogonal matrices, provides theoretical analysis that pre-training orthogonalisation always converges, and empirically confirms that the proposed schemes outperform randomly initialised recurrent and feedforward networks.