一种用于图像分类的非单调激活函数

Narayana Darapaneni, A. Paduri, Anjan Arun Bhowmick, P. Ranjini, T. Kavitha, Suresh Rajendran, N. Veeresh, N. Vignesh
{"title":"一种用于图像分类的非单调激活函数","authors":"Narayana Darapaneni, A. Paduri, Anjan Arun Bhowmick, P. Ranjini, T. Kavitha, Suresh Rajendran, N. Veeresh, N. Vignesh","doi":"10.1109/IConSCEPT57958.2023.10170022","DOIUrl":null,"url":null,"abstract":"By providing non-linearity and enabling the network to understand complicated associations in the data, activation functions play a vital role in the performance of neural networks. Here, we introduce Esh, a brand-new activation function with the formula, $f(x) = xtanh(sigmoid(x))$. Using CNN architectures, we assess Esh’s performance on the MNIST, CIFAR10, and CIFAR-100 data sets. Our tests demonstrate that the Esh activation function outperforms a number of well-known activation functions, including ReLU, GELU, Mish, and Swish. In fact, compared to other activation functions, the Esh activation function has a more consistent loss landscape. Esh is a potential new activation function for deep neural networks, according to the findings of our study, and we anticipate that it will be widely used in the machine learning industry.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"17 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESH: A Non-Monotonic Activation Function For Image Classification\",\"authors\":\"Narayana Darapaneni, A. Paduri, Anjan Arun Bhowmick, P. Ranjini, T. Kavitha, Suresh Rajendran, N. Veeresh, N. Vignesh\",\"doi\":\"10.1109/IConSCEPT57958.2023.10170022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By providing non-linearity and enabling the network to understand complicated associations in the data, activation functions play a vital role in the performance of neural networks. Here, we introduce Esh, a brand-new activation function with the formula, $f(x) = xtanh(sigmoid(x))$. Using CNN architectures, we assess Esh’s performance on the MNIST, CIFAR10, and CIFAR-100 data sets. Our tests demonstrate that the Esh activation function outperforms a number of well-known activation functions, including ReLU, GELU, Mish, and Swish. In fact, compared to other activation functions, the Esh activation function has a more consistent loss landscape. Esh is a potential new activation function for deep neural networks, according to the findings of our study, and we anticipate that it will be widely used in the machine learning industry.\",\"PeriodicalId\":240167,\"journal\":{\"name\":\"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)\",\"volume\":\"17 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IConSCEPT57958.2023.10170022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10170022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过提供非线性并使网络能够理解数据中的复杂关联,激活函数在神经网络的性能中起着至关重要的作用。在这里,我们介绍Esh,一个全新的激活函数,其公式为$f(x) = xtanh(sigmoid(x))$。使用CNN架构,我们评估了Esh在MNIST、CIFAR10和CIFAR-100数据集上的性能。我们的测试表明,Esh激活函数优于许多众所周知的激活函数,包括ReLU、GELU、Mish和Swish。事实上,与其他激活函数相比,Esh激活函数具有更一致的损失景观。根据我们的研究结果,Esh是一种潜在的深度神经网络的新激活函数,我们预计它将广泛应用于机器学习行业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESH: A Non-Monotonic Activation Function For Image Classification
By providing non-linearity and enabling the network to understand complicated associations in the data, activation functions play a vital role in the performance of neural networks. Here, we introduce Esh, a brand-new activation function with the formula, $f(x) = xtanh(sigmoid(x))$. Using CNN architectures, we assess Esh’s performance on the MNIST, CIFAR10, and CIFAR-100 data sets. Our tests demonstrate that the Esh activation function outperforms a number of well-known activation functions, including ReLU, GELU, Mish, and Swish. In fact, compared to other activation functions, the Esh activation function has a more consistent loss landscape. Esh is a potential new activation function for deep neural networks, according to the findings of our study, and we anticipate that it will be widely used in the machine learning industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信