{"title":"最大功率点跟踪:太阳能系统中节约成本的必要手段","authors":"J. Enslin","doi":"10.1109/IECON.1990.149286","DOIUrl":null,"url":null,"abstract":"It is argued that a well-engineered renewable remote energy system utilizing the principal of maximum power point tracking (MPPT) can be cost effective, has a high reliability, and can improve the quality of life in remote areas. A highly efficient power electronic converter for converting the output voltage of a solar panel or wind generator to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the nput source under varying input and output parameters. MPPT for relatively small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor-based algorithm. Through field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved.<<ETX>>","PeriodicalId":253424,"journal":{"name":"[Proceedings] IECON '90: 16th Annual Conference of IEEE Industrial Electronics Society","volume":"54 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Maximum power point tracking: a cost saving necessity in solar energy systems\",\"authors\":\"J. Enslin\",\"doi\":\"10.1109/IECON.1990.149286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is argued that a well-engineered renewable remote energy system utilizing the principal of maximum power point tracking (MPPT) can be cost effective, has a high reliability, and can improve the quality of life in remote areas. A highly efficient power electronic converter for converting the output voltage of a solar panel or wind generator to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the nput source under varying input and output parameters. MPPT for relatively small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor-based algorithm. Through field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved.<<ETX>>\",\"PeriodicalId\":253424,\"journal\":{\"name\":\"[Proceedings] IECON '90: 16th Annual Conference of IEEE Industrial Electronics Society\",\"volume\":\"54 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] IECON '90: 16th Annual Conference of IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.1990.149286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] IECON '90: 16th Annual Conference of IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1990.149286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximum power point tracking: a cost saving necessity in solar energy systems
It is argued that a well-engineered renewable remote energy system utilizing the principal of maximum power point tracking (MPPT) can be cost effective, has a high reliability, and can improve the quality of life in remote areas. A highly efficient power electronic converter for converting the output voltage of a solar panel or wind generator to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the nput source under varying input and output parameters. MPPT for relatively small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor-based algorithm. Through field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved.<>