用于自动IC图像分析的深度学习

Xuenong Hong, Deruo Cheng, Yiqiong Shi, Tong Lin, B. Gwee
{"title":"用于自动IC图像分析的深度学习","authors":"Xuenong Hong, Deruo Cheng, Yiqiong Shi, Tong Lin, B. Gwee","doi":"10.1109/ICDSP.2018.8631555","DOIUrl":null,"url":null,"abstract":"We propose a systematic training and validation approach for obtaining a deep learning model for automatic IC image analysis, i.e. IC image semantic segmentation. Our approach divides IC images into different regions of interest and provides for noise rejection training. We discuss steps for obtaining such a model. By experiment and by comparison with competing image processing techniques, deep learning models obtained by our approach demonstrate good generalization capability, high prediction accuracy and low circuit annotation error.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"33 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Deep Learning for Automatic IC Image Analysis\",\"authors\":\"Xuenong Hong, Deruo Cheng, Yiqiong Shi, Tong Lin, B. Gwee\",\"doi\":\"10.1109/ICDSP.2018.8631555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a systematic training and validation approach for obtaining a deep learning model for automatic IC image analysis, i.e. IC image semantic segmentation. Our approach divides IC images into different regions of interest and provides for noise rejection training. We discuss steps for obtaining such a model. By experiment and by comparison with competing image processing techniques, deep learning models obtained by our approach demonstrate good generalization capability, high prediction accuracy and low circuit annotation error.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"33 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们提出了一种系统的训练和验证方法来获得用于自动集成电路图像分析的深度学习模型,即集成电路图像语义分割。我们的方法将IC图像划分为不同的感兴趣区域,并提供噪声抑制训练。我们讨论了获得这种模型的步骤。通过实验和与竞争图像处理技术的比较,该方法获得的深度学习模型具有良好的泛化能力、较高的预测精度和较低的电路标注误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning for Automatic IC Image Analysis
We propose a systematic training and validation approach for obtaining a deep learning model for automatic IC image analysis, i.e. IC image semantic segmentation. Our approach divides IC images into different regions of interest and provides for noise rejection training. We discuss steps for obtaining such a model. By experiment and by comparison with competing image processing techniques, deep learning models obtained by our approach demonstrate good generalization capability, high prediction accuracy and low circuit annotation error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信