永磁同步电机伺服驱动双段式滑模控制

Yongan Li, Xiwei Peng
{"title":"永磁同步电机伺服驱动双段式滑模控制","authors":"Yongan Li, Xiwei Peng","doi":"10.1109/AMC.2016.7496387","DOIUrl":null,"url":null,"abstract":"This paper proposes a double-segment sliding mode control method in accordance with an exponential velocity profile for a high precision three-axis AC servo system used for industrial production. The newly designed sliding mode controller is composed of the velocity segment and the position segment. Global sliding mode control is used in the velocity segment so that the velocity along the sliding surface can exponentially accelerate from 0 to a constant velocity determined by the given position. Integral sliding mode control is adopted in the position segment to improve the position accuracy. In order to reduce the chattering and enhance the robustness of the system, the fuzzy inference is introduced to obtain the switching control laws. Several simulation results are provided to demonstrate the validity of the proposed method.","PeriodicalId":273847,"journal":{"name":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double-segment sliding mode control for permanent magnet synchronous motor servo drives\",\"authors\":\"Yongan Li, Xiwei Peng\",\"doi\":\"10.1109/AMC.2016.7496387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a double-segment sliding mode control method in accordance with an exponential velocity profile for a high precision three-axis AC servo system used for industrial production. The newly designed sliding mode controller is composed of the velocity segment and the position segment. Global sliding mode control is used in the velocity segment so that the velocity along the sliding surface can exponentially accelerate from 0 to a constant velocity determined by the given position. Integral sliding mode control is adopted in the position segment to improve the position accuracy. In order to reduce the chattering and enhance the robustness of the system, the fuzzy inference is introduced to obtain the switching control laws. Several simulation results are provided to demonstrate the validity of the proposed method.\",\"PeriodicalId\":273847,\"journal\":{\"name\":\"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2016.7496387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2016.7496387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对工业生产中的高精度三轴交流伺服系统,提出了一种基于指数速度曲线的双段式滑模控制方法。新设计的滑模控制器由速度段和位置段组成。速度段采用全局滑模控制,使沿滑动面的速度从0指数加速到给定位置所确定的匀速。位置段采用积分滑模控制,提高了定位精度。为了减少抖振,提高系统的鲁棒性,引入模糊推理来获得切换控制律。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double-segment sliding mode control for permanent magnet synchronous motor servo drives
This paper proposes a double-segment sliding mode control method in accordance with an exponential velocity profile for a high precision three-axis AC servo system used for industrial production. The newly designed sliding mode controller is composed of the velocity segment and the position segment. Global sliding mode control is used in the velocity segment so that the velocity along the sliding surface can exponentially accelerate from 0 to a constant velocity determined by the given position. Integral sliding mode control is adopted in the position segment to improve the position accuracy. In order to reduce the chattering and enhance the robustness of the system, the fuzzy inference is introduced to obtain the switching control laws. Several simulation results are provided to demonstrate the validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信