关联规则挖掘

Vasudha Bhatnagar, S. Kochhar
{"title":"关联规则挖掘","authors":"Vasudha Bhatnagar, S. Kochhar","doi":"10.4018/978-1-59904-849-9.CH027","DOIUrl":null,"url":null,"abstract":"INTRODUCTION Data mining is a field encompassing study of the tools and techniques to assist humans in intelligently analyzing (mining) mountains of data. Data mining has found successful applications in many fields including sales and marketing, financial crime identification, portfolio management, medical diagnosis, manufacturing process management and health care improvement etc.. Data mining techniques can be classified as either descriptive or predictive techniques. Descriptive techniques summarize / characterize general properties of data, while predictive techniques construct a model from the historical data and use it to predict some characteristics of the future data. Association rule mining, sequence analysis and clustering are key descriptive data mining techniques, while classification and regression are predictive techniques. The objective of this article is to introduce the problem of association rule mining and describe some approaches to solve the problem.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"17 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association Rule Mining\",\"authors\":\"Vasudha Bhatnagar, S. Kochhar\",\"doi\":\"10.4018/978-1-59904-849-9.CH027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION Data mining is a field encompassing study of the tools and techniques to assist humans in intelligently analyzing (mining) mountains of data. Data mining has found successful applications in many fields including sales and marketing, financial crime identification, portfolio management, medical diagnosis, manufacturing process management and health care improvement etc.. Data mining techniques can be classified as either descriptive or predictive techniques. Descriptive techniques summarize / characterize general properties of data, while predictive techniques construct a model from the historical data and use it to predict some characteristics of the future data. Association rule mining, sequence analysis and clustering are key descriptive data mining techniques, while classification and regression are predictive techniques. The objective of this article is to introduce the problem of association rule mining and describe some approaches to solve the problem.\",\"PeriodicalId\":320314,\"journal\":{\"name\":\"Encyclopedia of Artificial Intelligence\",\"volume\":\"17 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-59904-849-9.CH027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据挖掘是一个涵盖工具和技术的研究领域,以帮助人类智能地分析(挖掘)海量数据。数据挖掘在许多领域都有成功的应用,包括销售和市场营销、金融犯罪识别、投资组合管理、医疗诊断、制造过程管理和医疗保健改进等。数据挖掘技术可以分为描述性技术和预测性技术。描述技术总结/描述数据的一般属性,而预测技术从历史数据构建模型,并用它来预测未来数据的某些特征。关联规则挖掘、序列分析和聚类是关键的描述性数据挖掘技术,分类和回归是关键的预测性技术。本文的目的是介绍关联规则挖掘问题,并描述解决该问题的一些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Association Rule Mining
INTRODUCTION Data mining is a field encompassing study of the tools and techniques to assist humans in intelligently analyzing (mining) mountains of data. Data mining has found successful applications in many fields including sales and marketing, financial crime identification, portfolio management, medical diagnosis, manufacturing process management and health care improvement etc.. Data mining techniques can be classified as either descriptive or predictive techniques. Descriptive techniques summarize / characterize general properties of data, while predictive techniques construct a model from the historical data and use it to predict some characteristics of the future data. Association rule mining, sequence analysis and clustering are key descriptive data mining techniques, while classification and regression are predictive techniques. The objective of this article is to introduce the problem of association rule mining and describe some approaches to solve the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信