{"title":"获取准确信息的博弈论机制","authors":"B. Faltings","doi":"10.24963/ijcai.2023/740","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence often relies on information obtained from others through crowdsourcing, federated learning, or data markets. It is crucial to ensure that this data is accurate. Over the past 20 years, a variety of incentive mechanisms have been developed that use game theory to reward the accuracy of contributed data. These techniques are applicable to many settings where AI uses contributed data.\n\n\n\nThis survey categorizes the different techniques and their properties, and shows their limits and tradeoffs. It identifies open issues and points to possible directions to address these.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Game-theoretic Mechanisms for Eliciting Accurate Information\",\"authors\":\"B. Faltings\",\"doi\":\"10.24963/ijcai.2023/740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence often relies on information obtained from others through crowdsourcing, federated learning, or data markets. It is crucial to ensure that this data is accurate. Over the past 20 years, a variety of incentive mechanisms have been developed that use game theory to reward the accuracy of contributed data. These techniques are applicable to many settings where AI uses contributed data.\\n\\n\\n\\nThis survey categorizes the different techniques and their properties, and shows their limits and tradeoffs. It identifies open issues and points to possible directions to address these.\",\"PeriodicalId\":394530,\"journal\":{\"name\":\"International Joint Conference on Artificial Intelligence\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Joint Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2023/740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Game-theoretic Mechanisms for Eliciting Accurate Information
Artificial Intelligence often relies on information obtained from others through crowdsourcing, federated learning, or data markets. It is crucial to ensure that this data is accurate. Over the past 20 years, a variety of incentive mechanisms have been developed that use game theory to reward the accuracy of contributed data. These techniques are applicable to many settings where AI uses contributed data.
This survey categorizes the different techniques and their properties, and shows their limits and tradeoffs. It identifies open issues and points to possible directions to address these.