基于主成分分析的线性离散周期系统传感器FDI方案

I. Djemili, A. Aitouche, B. O. Bouamama
{"title":"基于主成分分析的线性离散周期系统传感器FDI方案","authors":"I. Djemili, A. Aitouche, B. O. Bouamama","doi":"10.1109/SYSTOL.2010.5676050","DOIUrl":null,"url":null,"abstract":"In this paper, Sensors FDI scheme of Linear Discrete-Time Periodic Systems using Principal Component Analysis (PCA) is proposed. The idea of this FDI scheme is to model the Linear Discrete-Time Periodic System with multiple models PCA denoted T-PCA (T is the period). For this approach, a database of measurements collected on a system in normal process operation and the period T of this system are required. The faulty sensor is detected by comparing the observed behavior given by the measurement and the expected behavior given by the T-PCA model. The variable reconstruction approach allows isolating the faulty sensors. For our numerical example, this FDI scheme allows us to detect and isolate sensors faults and then shows the effectiveness of our approach.","PeriodicalId":253370,"journal":{"name":"2010 Conference on Control and Fault-Tolerant Systems (SysTol)","volume":"46 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensors FDI scheme of Linear Discrete-Time Periodic Systems using Principal Component Analysis\",\"authors\":\"I. Djemili, A. Aitouche, B. O. Bouamama\",\"doi\":\"10.1109/SYSTOL.2010.5676050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Sensors FDI scheme of Linear Discrete-Time Periodic Systems using Principal Component Analysis (PCA) is proposed. The idea of this FDI scheme is to model the Linear Discrete-Time Periodic System with multiple models PCA denoted T-PCA (T is the period). For this approach, a database of measurements collected on a system in normal process operation and the period T of this system are required. The faulty sensor is detected by comparing the observed behavior given by the measurement and the expected behavior given by the T-PCA model. The variable reconstruction approach allows isolating the faulty sensors. For our numerical example, this FDI scheme allows us to detect and isolate sensors faults and then shows the effectiveness of our approach.\",\"PeriodicalId\":253370,\"journal\":{\"name\":\"2010 Conference on Control and Fault-Tolerant Systems (SysTol)\",\"volume\":\"46 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Conference on Control and Fault-Tolerant Systems (SysTol)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYSTOL.2010.5676050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Conference on Control and Fault-Tolerant Systems (SysTol)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSTOL.2010.5676050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了基于主成分分析(PCA)的线性离散周期系统的传感器直接投资方案。该FDI方案的思想是对线性离散时间周期系统进行多模型PCA建模,表示为T-PCA (T为周期)。对于这种方法,需要在正常过程操作中收集系统的测量数据数据库以及该系统的周期T。通过比较测量给出的观察行为和T-PCA模型给出的期望行为来检测故障传感器。可变重构方法允许隔离故障传感器。对于我们的数值示例,该FDI方案允许我们检测和隔离传感器故障,然后显示了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensors FDI scheme of Linear Discrete-Time Periodic Systems using Principal Component Analysis
In this paper, Sensors FDI scheme of Linear Discrete-Time Periodic Systems using Principal Component Analysis (PCA) is proposed. The idea of this FDI scheme is to model the Linear Discrete-Time Periodic System with multiple models PCA denoted T-PCA (T is the period). For this approach, a database of measurements collected on a system in normal process operation and the period T of this system are required. The faulty sensor is detected by comparing the observed behavior given by the measurement and the expected behavior given by the T-PCA model. The variable reconstruction approach allows isolating the faulty sensors. For our numerical example, this FDI scheme allows us to detect and isolate sensors faults and then shows the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信