用于无源超高频RFID标签测距的人工神经网络

M. Agatonovic, E. Di Giampaolo, P. Tognolatti, B. Milovanovic
{"title":"用于无源超高频RFID标签测距的人工神经网络","authors":"M. Agatonovic, E. Di Giampaolo, P. Tognolatti, B. Milovanovic","doi":"10.1109/TELSKS.2013.6704428","DOIUrl":null,"url":null,"abstract":"Ranging of passive Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tags in indoor environments is a topical issue nowadays. Due to complexity of such an environment, there is no effective solution to this problem. In this paper we investigate application of Artificial Neural Networks (ANNs) in indoor localization of passive UHF RFID tags. Namely, we estimate distance between a reader antenna and a couple of tags attached to an item, using nonlinear mapping that ANNs perform between measured values of the Received Signal Strength Indicator (RSSI), turn on power and phase on the one hand, and the distance on the other. The proposed ANN model calculates distance with an average error of 7.31 cm.","PeriodicalId":144044,"journal":{"name":"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)","volume":"74 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Artificial Neural Networks for ranging of passive UHF RFID tags\",\"authors\":\"M. Agatonovic, E. Di Giampaolo, P. Tognolatti, B. Milovanovic\",\"doi\":\"10.1109/TELSKS.2013.6704428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ranging of passive Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tags in indoor environments is a topical issue nowadays. Due to complexity of such an environment, there is no effective solution to this problem. In this paper we investigate application of Artificial Neural Networks (ANNs) in indoor localization of passive UHF RFID tags. Namely, we estimate distance between a reader antenna and a couple of tags attached to an item, using nonlinear mapping that ANNs perform between measured values of the Received Signal Strength Indicator (RSSI), turn on power and phase on the one hand, and the distance on the other. The proposed ANN model calculates distance with an average error of 7.31 cm.\",\"PeriodicalId\":144044,\"journal\":{\"name\":\"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)\",\"volume\":\"74 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELSKS.2013.6704428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSKS.2013.6704428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

无源超高频(UHF)射频识别(RFID)标签在室内环境中的测距是当今的热点问题。由于这种环境的复杂性,目前还没有有效的解决方案。本文研究了人工神经网络在无源超高频RFID标签室内定位中的应用。也就是说,我们估计阅读器天线和附着在物品上的几个标签之间的距离,使用ann在接收信号强度指示器(RSSI)的测量值之间执行的非线性映射,一方面打开电源和相位,另一方面打开距离。该模型计算距离的平均误差为7.31 cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Neural Networks for ranging of passive UHF RFID tags
Ranging of passive Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tags in indoor environments is a topical issue nowadays. Due to complexity of such an environment, there is no effective solution to this problem. In this paper we investigate application of Artificial Neural Networks (ANNs) in indoor localization of passive UHF RFID tags. Namely, we estimate distance between a reader antenna and a couple of tags attached to an item, using nonlinear mapping that ANNs perform between measured values of the Received Signal Strength Indicator (RSSI), turn on power and phase on the one hand, and the distance on the other. The proposed ANN model calculates distance with an average error of 7.31 cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信