基于圆偏振相关系数的城市建设面积提取

Li Xiaoxia, Wang Wenguang, Yang Erfu
{"title":"基于圆偏振相关系数的城市建设面积提取","authors":"Li Xiaoxia, Wang Wenguang, Yang Erfu","doi":"10.1109/IST.2013.6729721","DOIUrl":null,"url":null,"abstract":"Urban construction area detection is of great significance for tracking, mission planning, training, loss estimation and urban planning. In this paper, we make full use of the polarization characteristics of SAR (synthetic aperture radar) data to detect urban construction area. First, circular polarization correlation coefficient characteristics, entropy characteristics based on the gray level co-occurrence matrix (GLCM), and the dihedral angle scattering characteristics using the Pauli decomposition are extracted to distinguish among urban area, forest area and other manmade targets. And then we adopt the three kinds of characteristic to form feature vector and complete urban area detection based on k-means clustering analysis. The experimental result has proved the efficiency of this method.","PeriodicalId":448698,"journal":{"name":"2013 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"7 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Urban construction area extraction using circular polarimetric correlation coefficient\",\"authors\":\"Li Xiaoxia, Wang Wenguang, Yang Erfu\",\"doi\":\"10.1109/IST.2013.6729721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban construction area detection is of great significance for tracking, mission planning, training, loss estimation and urban planning. In this paper, we make full use of the polarization characteristics of SAR (synthetic aperture radar) data to detect urban construction area. First, circular polarization correlation coefficient characteristics, entropy characteristics based on the gray level co-occurrence matrix (GLCM), and the dihedral angle scattering characteristics using the Pauli decomposition are extracted to distinguish among urban area, forest area and other manmade targets. And then we adopt the three kinds of characteristic to form feature vector and complete urban area detection based on k-means clustering analysis. The experimental result has proved the efficiency of this method.\",\"PeriodicalId\":448698,\"journal\":{\"name\":\"2013 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"volume\":\"7 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST.2013.6729721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2013.6729721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

城市建设区域检测对于跟踪、任务规划、训练、损失估计和城市规划具有重要意义。本文充分利用合成孔径雷达(SAR)数据的偏振特性对城市建筑区域进行探测。首先,提取圆极化相关系数特征、基于灰度共生矩阵(GLCM)的熵特征和基于泡利分解的二面角散射特征,以区分城市区域、森林区域和其他人造目标;然后采用这三种特征组成特征向量,完成基于k-means聚类分析的城区检测。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Urban construction area extraction using circular polarimetric correlation coefficient
Urban construction area detection is of great significance for tracking, mission planning, training, loss estimation and urban planning. In this paper, we make full use of the polarization characteristics of SAR (synthetic aperture radar) data to detect urban construction area. First, circular polarization correlation coefficient characteristics, entropy characteristics based on the gray level co-occurrence matrix (GLCM), and the dihedral angle scattering characteristics using the Pauli decomposition are extracted to distinguish among urban area, forest area and other manmade targets. And then we adopt the three kinds of characteristic to form feature vector and complete urban area detection based on k-means clustering analysis. The experimental result has proved the efficiency of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信