基于绒泡菌数学模型的多目标蚁群优化算法

Yuxin Liu, Yuxiao Lu, Chao Gao, Z. Zhang, Li Tao
{"title":"基于绒泡菌数学模型的多目标蚁群优化算法","authors":"Yuxin Liu, Yuxiao Lu, Chao Gao, Z. Zhang, Li Tao","doi":"10.1109/ICNC.2014.6975852","DOIUrl":null,"url":null,"abstract":"Multi-objective traveling salesman problem (MOTSP) is an important field in operations research, which has wide applications in the real world. Multi-objective ant colony optimization (MOACO) as one of the most effective algorithms has gained popularity for solving a MOTSP. However, there exists the problem of premature convergence in most of MOACO algorithms. With this observation in mind, an improved multi-objective network ant colony optimization, denoted as PM-MONACO, is proposed, which employs the unique feature of critical tubes reserved in the network evolution process of the Physarum-inspired mathematical model (PMM). By considering both pheromones deposited by ants and flowing in the Physarum network, PM-MONACO uses an optimized pheromone matrix updating strategy. Experimental results in benchmark networks show that PM-MONACO can achieve a better compromise solution than the original MOACO algorithm for solving MOTSPs.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"8 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A multi-objective ant colony optimization algorithm based on the Physarum-inspired mathematical model\",\"authors\":\"Yuxin Liu, Yuxiao Lu, Chao Gao, Z. Zhang, Li Tao\",\"doi\":\"10.1109/ICNC.2014.6975852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-objective traveling salesman problem (MOTSP) is an important field in operations research, which has wide applications in the real world. Multi-objective ant colony optimization (MOACO) as one of the most effective algorithms has gained popularity for solving a MOTSP. However, there exists the problem of premature convergence in most of MOACO algorithms. With this observation in mind, an improved multi-objective network ant colony optimization, denoted as PM-MONACO, is proposed, which employs the unique feature of critical tubes reserved in the network evolution process of the Physarum-inspired mathematical model (PMM). By considering both pheromones deposited by ants and flowing in the Physarum network, PM-MONACO uses an optimized pheromone matrix updating strategy. Experimental results in benchmark networks show that PM-MONACO can achieve a better compromise solution than the original MOACO algorithm for solving MOTSPs.\",\"PeriodicalId\":208779,\"journal\":{\"name\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"volume\":\"8 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2014.6975852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

多目标旅行商问题(MOTSP)是运筹学中的一个重要研究领域,在现实世界中有着广泛的应用。多目标蚁群优化算法(MOACO)作为求解MOTSP最有效的算法之一得到了广泛的应用。然而,大多数MOACO算法都存在过早收敛的问题。考虑到这一点,提出了一种改进的多目标网络蚁群优化算法PM-MONACO,该算法利用绒泡菌启发数学模型(PMM)在网络进化过程中保留关键管的独特特征。PM-MONACO同时考虑了蚂蚁沉积的信息素和绒泡菌网络中流动的信息素,采用了优化的信息素矩阵更新策略。在基准网络上的实验结果表明,PM-MONACO算法比原始MOACO算法在求解mosp时能获得更好的折衷解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-objective ant colony optimization algorithm based on the Physarum-inspired mathematical model
Multi-objective traveling salesman problem (MOTSP) is an important field in operations research, which has wide applications in the real world. Multi-objective ant colony optimization (MOACO) as one of the most effective algorithms has gained popularity for solving a MOTSP. However, there exists the problem of premature convergence in most of MOACO algorithms. With this observation in mind, an improved multi-objective network ant colony optimization, denoted as PM-MONACO, is proposed, which employs the unique feature of critical tubes reserved in the network evolution process of the Physarum-inspired mathematical model (PMM). By considering both pheromones deposited by ants and flowing in the Physarum network, PM-MONACO uses an optimized pheromone matrix updating strategy. Experimental results in benchmark networks show that PM-MONACO can achieve a better compromise solution than the original MOACO algorithm for solving MOTSPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信