{"title":"基于绒泡菌数学模型的多目标蚁群优化算法","authors":"Yuxin Liu, Yuxiao Lu, Chao Gao, Z. Zhang, Li Tao","doi":"10.1109/ICNC.2014.6975852","DOIUrl":null,"url":null,"abstract":"Multi-objective traveling salesman problem (MOTSP) is an important field in operations research, which has wide applications in the real world. Multi-objective ant colony optimization (MOACO) as one of the most effective algorithms has gained popularity for solving a MOTSP. However, there exists the problem of premature convergence in most of MOACO algorithms. With this observation in mind, an improved multi-objective network ant colony optimization, denoted as PM-MONACO, is proposed, which employs the unique feature of critical tubes reserved in the network evolution process of the Physarum-inspired mathematical model (PMM). By considering both pheromones deposited by ants and flowing in the Physarum network, PM-MONACO uses an optimized pheromone matrix updating strategy. Experimental results in benchmark networks show that PM-MONACO can achieve a better compromise solution than the original MOACO algorithm for solving MOTSPs.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"8 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A multi-objective ant colony optimization algorithm based on the Physarum-inspired mathematical model\",\"authors\":\"Yuxin Liu, Yuxiao Lu, Chao Gao, Z. Zhang, Li Tao\",\"doi\":\"10.1109/ICNC.2014.6975852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-objective traveling salesman problem (MOTSP) is an important field in operations research, which has wide applications in the real world. Multi-objective ant colony optimization (MOACO) as one of the most effective algorithms has gained popularity for solving a MOTSP. However, there exists the problem of premature convergence in most of MOACO algorithms. With this observation in mind, an improved multi-objective network ant colony optimization, denoted as PM-MONACO, is proposed, which employs the unique feature of critical tubes reserved in the network evolution process of the Physarum-inspired mathematical model (PMM). By considering both pheromones deposited by ants and flowing in the Physarum network, PM-MONACO uses an optimized pheromone matrix updating strategy. Experimental results in benchmark networks show that PM-MONACO can achieve a better compromise solution than the original MOACO algorithm for solving MOTSPs.\",\"PeriodicalId\":208779,\"journal\":{\"name\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"volume\":\"8 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2014.6975852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multi-objective ant colony optimization algorithm based on the Physarum-inspired mathematical model
Multi-objective traveling salesman problem (MOTSP) is an important field in operations research, which has wide applications in the real world. Multi-objective ant colony optimization (MOACO) as one of the most effective algorithms has gained popularity for solving a MOTSP. However, there exists the problem of premature convergence in most of MOACO algorithms. With this observation in mind, an improved multi-objective network ant colony optimization, denoted as PM-MONACO, is proposed, which employs the unique feature of critical tubes reserved in the network evolution process of the Physarum-inspired mathematical model (PMM). By considering both pheromones deposited by ants and flowing in the Physarum network, PM-MONACO uses an optimized pheromone matrix updating strategy. Experimental results in benchmark networks show that PM-MONACO can achieve a better compromise solution than the original MOACO algorithm for solving MOTSPs.